14. Summary of results#

% of differences compared to the reference solutions

DKT

DKQ

DST

DSQ

Q4G

A

Love-Kirchhoff

B

Love-Kirchhoff

E

Love-Kirchhoff

F

Reissner

G

Reissner

H

Reissner

50 knots

76 TRIA3

170 knots

296 TRIA3

169 knots

147 QUAD4

170 knots

296 TRIA3

169 knots

147 QUAD4

169 knots

147 QUAD4

O

_images/Object_130.svg

—1.10

—0.09

—0.09

+0.12

—0.11

—0.15

D

_images/Object_131.svg

—1.01

—0.1

—0.11

+0.08

—0.13

—0.20

E

_images/Object_132.svg

—1.03

—0.09

—0.12

+0.09

—0.13

—0.20

F

_images/Object_133.svg

—1.05

—0.09

—0.09

+0.07

—0.15

—0.21

MEC3QU9H

MEC3TR7H

I

J

96 knots

25 QUAD9

121 knots

50 TRIA7

O

_images/Object_134.svg

1.42 10 —3

—0.03

D

_images/Object_135.svg
  1. 10 —3

—0.07

E

_images/Object_136.svg
  1. 10 —3

—0.07

F

_images/Object_137.svg

Regarding travel:

Plate and shell elements give good results on fairly coarse meshes.

DKT

DKQ

DST

DSQ

Q4G

A Love-Kirchhoff

B Love-Kirchhoff

E Love-Kirchhoff

F Reissner

G Reissner

H Reissner

50 knots 76 TRIA3

170 knots 296 TRIA3

169 knots 147 QUAD4

170 knots 296 TRIA3

169 knots 147 QUAD4

169 knots 147 QUAD4

O Sm/2

—1.19

+0.02

+0.02

+0.07

+0.07

—0.76

—0.14

A Sm/2

+5.79

—0.06

—0.06

—0.49

—4.40

—9.80

+17.80

B Sm/2

—13.100

—5.100

—5.53

+1.00

—9.10

—7.12

+19.70

C Sm/2

+5.73

—0.06

—0.06

—0.46

—4.41

—9.44

+17.90

D Sm/2

+0.20

+0.35

+0.35

+0.50

+0.43

+0.49

+0.05

E Sm/2

+0.19

+0.19

+0.42

+0.50

+0.50

+0.50

+0.05

F Sm/2

—0.66

+0.25

—0.25

—0.30

+0.15

+19.00

—0.33

MEC3QU9H

MEC3TR7H

I

J

96 knots 25 QUAD9

121 knots 50 TRIA7

O Sm/2

1.05

1.14

A Sm/2

2.9

0.25

B Sm/2

C Sm/2

2.9

0.25

D Sm/2

0.28

—0.28

E Sm/2

0.28

—0.28

F Sm/2

Regarding the efforts:

  • On the pressed edge, significant errors (up to 20%) are observed compared to analytical solutions. The error is the most pronounced on modeling \(H\) (Q4G).

  • by refining the mesh of each model, we observe the convergence of efforts, that is to say that the error tends towards 0. However, the order of convergence is lower for modeling \(H\): the Q4G element requires in fact to mesh very finely in the directions stressed during bending (it uses a bilinear approximation of the rotations whereas modeling DST is based on a quadratic approximation).