6. D modeling#

6.1. Characteristics of modeling#

In this modeling, the geometric method is tested for crack propagation. The level-sets are recalculated at each propagation step.

6.2. Characteristics of the mesh#

Here we use the same mesh as in modeling \(A\).

6.3. Tested sizes and results#

For each propagation step, we test the value of the stress intensity factors \({K}_{I}\) and \({K}_{\mathrm{II}}\) given by CALC_G.

6.3.1. Results on \({K}_{I}\):#

A relative non-regression test is carried out on \({K}_{I}\) compared to \({K}_{I\mathrm{maillage}}\) with an accuracy of \(\text{3\%}\).

Identification

Code_Aster

Reference

Difference ( \(\text{\%}\) )

CALC_G

KI_1

2.4396 10-1

2.43961 10-1

2.43961 10-1

-2.03 10-4%

KI_2

2.9026 10-1

2.90147 10-1

0.04%

KI_3

3.3057 10-1

3.30840 10-1

0.08%

KI_4

3.7665 10-1

3.75984 10-1

0.18%

KI_5

4.3352 10-1

4.33606 10-1

0.01%

KI_6

4.966710-1

4.96975 10-1

0.06%

KI_7

5,7348 10-1

5,73785 10-1

0.05%

KI_8

6.7175 10-1

6.70222 10-1

0.23%

KI_9

7,8989 10-1

7,89716 10-1

0.02%

KI_10

9.3925 10-1

9.39463 10-1

0.02%

KI_11

1.15158

1.15201

0.04%

KI_12

1.45290

1.45163

0.09%

KI_13

1.92063

1.91885

0.09%

6.3.2. Results on \({K}_{\mathrm{II}}\):#

For this test, we want \({K}_{\mathrm{II}}\) to be such as \({K}_{\mathrm{II}}={K}_{\mathrm{IIref}}\pm {3.10}^{-2}\) (test in absolute).

Identification

Code_Aster

Reference

Difference %

CALC_G

KII_1

4,27721 10-2

4,27722 10-2

3,92 10-8

KII_2

5,49728 10-5

1,21013 10-4

6,6 10-5

KII_3

8,31292 10-3

7,10255 10-3

1,21 10-3

1,21 10-3

KII_4

1.41042 10-3

1.94683 10-3

5.36 10-4

KII_5

1.93652 10-4

1.20266 10-3

7.34 10-4

KII_6

7.04563 10-4

8.82542 10-4

1.78 10-4

1.78 10-4

KII_7

0.0

-1.23199 10-3

1.23 10-3

1.23 10-3

KII_8

0.0

-3.54655 10-3

3.55 10-3

3.55 10-3

KII_9

0.0

-4.54122 10-3

4.54 10-3

4.54 10-3

KII_10

0.0

-8,18030 10-3

8,18 10-3

8,18 10-3

KII_11

0.0

-1.55772 10-2

1.56

KII_12

0.0

-2.31849 10-2

2.32

KII_13

0.0

-3.52229 10-2

3.52