4. B modeling#

4.1. Characteristics of modeling#

We use a D_ PLAN modeling.

4.2. Characteristics of the mesh#

The same mesh is used as for modeling A.

4.3. Tested sizes and results#

The minimum and maximum stresses on the plate are tested for field SIEF_ELNO calculated by the operator CALC_CHAMP:

Identification

Reference type

Reference value

Precision

\(\mathit{MAX}\) - \(\mathit{SIXX}\)

“ANALYTIQUE”

20.0 MPa

5E -3%

\(\mathit{MIN}\) - \(\mathit{SIXX}\)

“ANALYTIQUE”

20.0 MPa

5E -3%

\(\mathit{MAX}\) - \(\mathit{SIXY}\)

“ANALYTIQUE”

0.0 MPa

0.05

\(\mathit{MIN}\) - \(\mathit{SIXY}\)

“ANALYTIQUE”

0.0 MPa

0.05

We test the minimum and maximum stresses on the plate for field SIGM_ELNO calculated underground by the operator CALC_ERREUR:

Identification

Reference type

Reference value

Precision

\(\mathit{MAX}\) - \(\mathit{SIXX}\)

“ANALYTIQUE”

20.0 MPa

5E -3%

\(\mathit{MIN}\) - \(\mathit{SIXX}\)

“ANALYTIQUE”

20.0 MPa

5E -3%

\(\mathit{MAX}\) - \(\mathit{SIXY}\)

“ANALYTIQUE”

0.0 MPa

0.05

\(\mathit{MIN}\) - \(\mathit{SIXY}\)

“ANALYTIQUE”

0.0 MPa

0.05

We test the minimum and maximum constraints on the field plate SISE_ELNO (node of the sub-elements X- FEM) calculated underground by the operator CALC_ERREUR:

Identification

Reference type

Reference value

Precision

\(\mathit{MAX}\) - \(X4\)

“ANALYTIQUE”

0.0 MPa

0.05

\(\mathit{MIN}\) - \(X4\)

“ANALYTIQUE”

0.0 MPa

0.05

Finally we test the field for error estimator ERME_ELEM:

Identification

Reference type

Reference value

Precision

\(\mathit{MAX}\) - \(\mathit{ERREST}\)

“ANALYTIQUE”

0.0

1E-04

\(\mathit{MIN}\) - \(\mathit{ERREST}\)

“ANALYTIQUE”

0.0

1E-04

4.4. notes#

The constraints obtained calculated at the nodes of the mesh by CALC_ERREUR and by CALC_CHAMP are indeed the same.

The calculation of the error takes good account of the pressure forces applied to the right edge. An estimate of the zero error is obtained (with the exception of the numerical error).