3. Modeling A#

3.1. Characteristics of modeling#

We use C_ PLAN modeling.

3.2. Characteristics of the mesh#

The mesh contains 121 elements of type QUAD4.

_images/100000000000017E0000016C648815C9E87487A3.png

3.3. Tested sizes and results#

The maximum and minimum stresses on the plate are tested for field SIEF_ELNO:

Identification

Reference type

\(\mathit{MAX}\) - \(\mathit{SIXX}\)

“NON_REGRESSION”

\(\mathit{MIN}\) - \(\mathit{SIXX}\)

“NON_REGRESSION”

\(\mathit{MAX}\) - \(\mathit{SIXY}\)

“NON_REGRESSION”

\(\mathit{MIN}\) - \(\mathit{SIXY}\)

“NON_REGRESSION”

The maximum and minimum stresses on the plate are tested for field SIGM_ELNO calculated underground by the operator CALC_ERREUR:

Identification

Reference type

\(\mathit{MAX}\) - \(\mathit{SIXX}\)

“NON_REGRESSION”

\(\mathit{MIN}\) - \(\mathit{SIXX}\)

“NON_REGRESSION”

\(\mathit{MAX}\) - \(\mathit{SIXY}\)

“NON_REGRESSION”

\(\mathit{MIN}\) - \(\mathit{SIXY}\)

“NON_REGRESSION”

We test the minimum and maximum constraints on the field plate SISE_ELNO (node of the sub-elements X- FEM) calculated underground by the operator CALC_ERREUR:

Identification

Reference type

Reference value

Precision

\(\mathit{MAX}\) - \(X4\)

“NON_REGRESSION”

0.812078942873 MPa

1E -04%

\(\mathit{MIN}\) - \(X4\)

“NON_REGRESSION”

-0.510118026455 MPa

1E -04%

Finally we test the field for error estimator ERME_ELEM:

Identification

Reference type

Reference value

Precision

\(\mathit{MAX}\) - \(\mathit{ERREST}\)

“NON_REGRESSION”

0.000698457464821

1E -04%

\(\mathit{MIN}\) - \(\mathit{ERREST}\)

“NON_REGRESSION”

3.49704197058E-06

1E -04%

3.4. notes#

The constraints obtained calculated at the nodes of the mesh by CALC_ERREUR and by CALC_CHAMP are indeed the same.

The stress field is resolved at Gauss points:

_images/10000000000002CD00000264394DB487D8B57D71.png

The smoothing done by calculating the stresses at the nodes introduces errors that cause the CALC_ERREURàsous -operator to estimate the error of the asymptotic field at the bottom of the crack.