1. Reference problem#

1.1. Geometry#

_images/100002010000025A0000028F556CC108A0407A87.png

We consider 4 values of angle \(\theta\): 15°, 30°, 45° and 60°.

The other dimensions are chosen such as \(H=\mathrm{2W}=\mathrm{4a}\).

The value of \(a\) is \(1.E-3m\).

1.2. Material properties#

Material #1

Elastic, linear, isotropic, Young’s modulus \({E}_{1}\mathrm{=}2E+12\mathit{Pa}\) and Poisson’s ratio \({\nu }_{1}\mathrm{=}\mathrm{0,3}\).

Material #2

Elastic, linear, isotropic, Young’s modulus \({E}_{2}=2E+11\mathrm{Pa}\) and Poisson’s ratio \({\nu }_{2}=\mathrm{0,3}\).

1.3. Boundary conditions and loading#

  • Rigid modes are blocked by the following boundary conditions:

\(\mathrm{UX}=\mathrm{UY}=0\) at the bottom left corner of the template.

\(\mathrm{UY}=0\) on the bottom edge.

  • Charging: uniform tension \({\sigma }_{\mathrm{yy}}={\sigma }_{0}\) on the top edge.

The value of \({\sigma }_{0}\) is \(100\mathrm{MPa}\).