3. Modeling A#

3.1. Characteristics of modeling#

The various models are identical except for the slope of the crack.

_images/100000000000010C00000210CE12A53FF4DD8C32.png

Full mesh for one angle \(\beta =60°\)

_images/100014E0000019BC000013D814D399948C887790.svg

Zoom on the crack point

The radius is \(7.5E-5m\).

There are four crowns defined by command CALC_G:

crown 1: \(\mathrm{Rinf}=0.\)

\(R\text{sup}=1.875E-\mathrm{5m}\)

crown 2: \(\mathrm{Rinf}=1.875E-\mathrm{5m}\)

\(R\text{sup}=3.750E-\mathrm{5m}\)

crown 3: \(\mathrm{Rinf}=3.750E-\mathrm{5m}\)

\(R\text{sup}=5.625E-\mathrm{5m}\)

crown 4: \(\mathrm{Rinf}=5.625E-\mathrm{5m}\)

\(R\text{sup}=7.500E-\mathrm{5m}\)

The direction of propagation is defined by: \(\mathrm{cos}\theta ,\mathrm{sin}\theta\)

3.2. Characteristics of the mesh#

The mesh consists of 10676 nodes and 4584 elements, including 1392 QUA8 elements and 3168 TRI6 elements.

3.3. Features tested#

The calculation of \({K}_{I}\) and \({K}_{\mathrm{II}}\) is not valid for a bimaterial: option K cannot be used and only the calculation of the energy return rate is possible.

3.4. Tested sizes and results#

3.4.1. Tested values#

Identification

Reference

Aster

% difference

Left end, \(\theta =15°\)

\(G\), crown 1

9.67362E+1

9.2428E+1

4.45

\(G\), crown 2

9.67362E+1

9.6392E+1

0.356

\(G\), crown 3

9.67362E+1

9.6417E+1

0.330

\(G\), crown 4

9.67362E+1

9.6421E+1

0.326

\({K}_{I}\)

5,6694E+6

\({K}_{\mathrm{II}}\)

2,4852E+6

Right end, \(\theta =15°\)

\(G\), crown 1

1.0125E+2

9.6763E+1

4.33

\(G\), crown 2

1.0125E+2

1.0093E+2

0.315

\(G\), crown 3

1.0125E+2

1.0095E+2

0.295

\(G\), crown 4

1.0125E+2

1.0095E+2

0.291

\({K}_{I}\)

6,3145E+6

\({K}_{\mathrm{II}}\)

4,8309E+5

3.4.2. notes#

To obtain the \(G\) on the bottom of the crack, we calculate the energy release rate using the relationship between \(G\) and the \({K}_{j}\) [bib3]:

\(\begin{array}{c}{\kappa }_{1}\mathrm{=}{\kappa }_{2}\mathrm{=}2.076923\\ {\mu }_{1}\mathrm{=}7.6923E+11\\ {\mu }_{2}\mathrm{=}7.6923E+10\\ \alpha \mathrm{=}\mathrm{-}9.37742E\mathrm{-}2\\ \beta \mathrm{=}2.524488E\mathrm{-}12\\ G\mathrm{=}\beta ({K}_{I}^{2}+{K}_{\mathit{II}}^{2})\end{array}\)