2. Benchmark solution#
2.1. Calculation method used for the reference solution#
The value of the displacement field \(v\), at the free end of the plate (edge \(\mathit{BC}\)) is given by:
\({v}_{L}\mathrm{=}\frac{{\mathit{PL}}^{3}}{{\mathrm{3EI}}_{y}}\) (neglected shear)
Hence \({v}_{L}\mathrm{=}0.129m\)
The flexural stress field \({\sigma }_{\mathit{xx}}\) is given by:
\({\sigma }_{\mathit{xx}}\mathrm{=}\frac{\mathit{Ph}}{{\mathrm{2l}}_{y}}(L\mathrm{-}x)\) on the \(\mathit{AB}\) ridge
Be \({\sigma }_{\mathit{xx}}\mathrm{=}2.04\mathrm{\times }{10}^{8}(L\mathrm{-}x)(\mathit{Pa})\)
2.2. Benchmark results#
Move \({v}_{L}\) of nodes \(B\) and \(C\)
\({\sigma }_{\mathit{xx}}\) constraints at nodes \(A\) and \(B\) and \(E\)
2.3. Uncertainty about the solution#
Analytical solution.
2.4. Bibliographical references#
TIMOSHENKO, Material Strength, Part 1. Librairie Polytechnique Ch.Béranger, Paris, 1947. p. 169 to 168