2. Benchmark solution#
2.1. Calculation method#
The reference solution comes from an analytical solution from [Bib1]:
(2.1)#\[ {u} _ {x} (x, y) =\ frac {4 (1- {\nu} ^ {2})} {{\ mathrm {EL}}} ^ {2}}} ^ {2}}}\ mathrm {.} (\ mathrm {y.} ({x} ^ {2} -\ mathrm {2.Lx}) +\ frac {2+\nu (1-\nu)} {3}\ mathrm {.} y\ mathrm {.} y\ mathrm {.} (\ frac {{L} ^ {2}}} {4} - {y} ^ {2}))\ mathrm {.} {\ sigma} _ {d}\]
And next \(y\):
(2.2)#\[ {u} _ {y} (x, y) =\ frac {4 (1- {\nu} ^ {2})} {{\ mathrm {EL}} ^ {2}} ({\ mathrm {Lx}}} ^ {2}} ^ {2}} -\ frac {{x}} ^ {2})} {3} -\nu\ mathrm {.} (1-\nu}} {\ mathrm {.}} (1-\nu}} ^ {2}} (1-\nu)\ mathrm {.} (1-\nu)\ mathrm {.} (1-\nu}} m {.} {y} ^ {2}\ mathrm {.} (x-L) +\ frac {4+5\nu\ mathrm {.} (1-\nu)} {12}\ mathrm {.} {\ mathrm {xL}} ^ {2}))\ mathrm {.} {\ sigma} _ {d}\]
2.2. Reference quantities and results#
Applying, we find the following displacement \(x\) at point \(C\): \({u}_{x}(L,L/2)=-1.5\mathrm{mm}\)
And by applying, we find the following displacement \(y\) to point \(C\): \({u}_{y}(L,L/2)=4.25\mathrm{mm}\)
2.3. Bibliographical references#
[Bib1] Timoshenko & Woinowsky-Krieger, « Theory of Plates and Shells, » McGrawhill, 1964.