1. Reference problem#
1.1. Geometry#
Geometry is a square with side \(L=100\mathrm{mm}\).
![]() |
1.2. Material properties#
The material is incompressible elastic and has the following properties:
\(E=100\mathrm{MPa}\)
\(\nu =0.4999\)
1.3. Boundary conditions and loads#
Given the antisymmetric nature of the problem, only half of the massif is modelled with the following boundary conditions:
On \(\mathrm{OE}\):
\(\mathrm{DX}(\mathrm{OE})=0\)
On \(\mathrm{OD}\):
\(\mathrm{DX}(O)=\mathrm{DY}(O)=0\)
\(\mathrm{DX}(D)=0\)
\(\mathrm{fsx}=\frac{\mathrm{8y}}{L}\mathrm{.}{\sigma }_{d}\)
\(\mathrm{fsy}=-(1-\frac{{\mathrm{4y}}^{2}}{\mathrm{L²}})\mathrm{.}{\sigma }_{d}\)
On \(\mathrm{BC}\):
\(\mathrm{fsy}=+(1-\frac{{\mathrm{4y}}^{2}}{\mathrm{L²}})\mathrm{.}{\sigma }_{d}\)
With \({\sigma }_{d}\) a given constraint, which we will take equal to 1 in the test. \({\sigma }_{d}=1\mathrm{MPa}\)