6. D modeling#

6.1. Characteristics of modeling#

Elements POU_D_TG, awkward twisting

\(\mathrm{JG}=\{\begin{array}{}5.5556E-8\mathrm{pour}{S}_{1}\\ 4.439822E-11\mathrm{pour}{S}_{2}\end{array}\)

In 0 \(\mathrm{GRX}=0\)

6.2. Characteristics of the mesh#

  • 10 SEG_2 meshes,

  • refinement towards embedding.

6.3. Tested sizes and results#

Same results as for modeling C, except for those concerning warping effects.

Load

Section

Identification

Reference

\({F}_{z}=1\)

\(\mathrm{S2}\)

\({\theta }_{x}=\mathrm{DRX}\)

2.62034E-5

\({u}_{z}=\mathrm{DZ}\)

1.14578E-6

\(\mathrm{GRX}\)

1.34652E-5

\({M}_{x}=1\)

\(\mathrm{S1}\)

\({u}_{z}=\mathrm{DZ}\)

5.52E-7

\(\mathrm{GRX}\)

2.84E-7

\(\mathrm{S2}\)

\({u}_{z}\)

2.6203E-5

\({\theta }_{x}\)

6.3892E-4

\(\mathrm{GRX}\)

3.28324E-4

6.4. notes#

For \({\theta }_{x}\) the solution is (cf [bib1]):

\({\theta }_{x}=\frac{{M}_{x}L}{G{J}_{x}}+\frac{{M}_{x}(1-{e}^{2\alpha L}-2{e}^{\alpha L})}{{\alpha }^{3}EJG(1+{e}^{2\alpha L})}\) \({\alpha }^{2}=\frac{GJ}{EJG}\)