6. D modeling#
6.1. Characteristics of modeling#
Elements POU_D_TG, awkward twisting
\(\mathrm{JG}=\{\begin{array}{}5.5556E-8\mathrm{pour}{S}_{1}\\ 4.439822E-11\mathrm{pour}{S}_{2}\end{array}\)
In 0 \(\mathrm{GRX}=0\)
6.2. Characteristics of the mesh#
10 SEG_2 meshes,
refinement towards embedding.
6.3. Tested sizes and results#
Same results as for modeling C, except for those concerning warping effects.
Load |
Section |
Identification |
Reference |
\({F}_{z}=1\) |
|
|
2.62034E-5 |
\({u}_{z}=\mathrm{DZ}\) |
1.14578E-6 |
||
\(\mathrm{GRX}\) |
1.34652E-5 |
||
\({M}_{x}=1\) |
|
|
5.52E-7 |
\(\mathrm{GRX}\) |
2.84E-7 |
||
\(\mathrm{S2}\) |
|
2.6203E-5 |
|
\({\theta }_{x}\) |
6.3892E-4 |
||
\(\mathrm{GRX}\) |
3.28324E-4 |
6.4. notes#
For \({\theta }_{x}\) the solution is (cf [bib1]):
\({\theta }_{x}=\frac{{M}_{x}L}{G{J}_{x}}+\frac{{M}_{x}(1-{e}^{2\alpha L}-2{e}^{\alpha L})}{{\alpha }^{3}EJG(1+{e}^{2\alpha L})}\) \({\alpha }^{2}=\frac{GJ}{EJG}\)