2. Benchmark solution#

2.1. Calculation method used for the reference solution#

_images/Object_7.svg

The constants \(A\) and \(B\) are calculated by solving the linear system obtained by writing:

\({\sigma }_{\mathrm{rr}}(a)=-p\) \({\sigma }_{\mathrm{rr}}(b)=0\)

We get:

For \(r=0.1\)

\({u}_{r}=7.3398{10}^{-3}\)

For \(r=0.2\)

\({u}_{r}=4.6816{10}^{-3}\)

\({\sigma }_{\mathrm{rr}}=-1\)

\({\sigma }_{\mathrm{rr}}=0.\)

\({\sigma }_{\theta \theta }=1.6685\)

\({\sigma }_{\theta \theta }=0.66738\)

\({\sigma }_{\mathrm{zz}}=0.20055\)

\({\sigma }_{\mathrm{zz}}=0.20031\)

Transition to the Cartesian axis system:

\(\begin{array}{ccc}{\sigma }_{\mathrm{xx}}& =& {\sigma }_{\mathrm{rr}}{\mathrm{cos}}^{2}\theta +{\sigma }_{\theta \theta }{\mathrm{sin}}^{2}\theta -2{\sigma }_{r\theta }\mathrm{sin}\theta \mathrm{cos}\theta \\ {\sigma }_{\mathrm{yy}}& =& {\sigma }_{\mathrm{rr}}{\mathrm{sin}}^{2}\theta +{\sigma }_{\theta \theta }{\mathrm{cos}}^{2}\theta +2{\sigma }_{r\theta }\mathrm{sin}\theta \mathrm{cos}\theta \\ {\sigma }_{\mathrm{xy}}& =& {\sigma }_{\mathrm{rr}}\mathrm{sin}\theta \mathrm{cos}\theta -{\sigma }_{\theta \theta }\mathrm{sin}\theta \mathrm{cos}\theta -2{\sigma }_{r\theta }({\mathrm{cos}}^{2}\theta -{\mathrm{sin}}^{2}\theta )\end{array}\)

with:

\(\theta =0°\) at points \(A\) and \(B\)

\(\theta =22.5°\) at points \(C\) and \(D\)

\(\theta =45°\) at points \(E\) and \(F\)

2.2. Benchmark results#

Displacements \((u,v)\) and constraints

_images/Object_12.svg

to points \(A,B,C,D,E,F\).

2.3. Uncertainty about the solution#

Precision of the calculation of Bessel functions.

2.4. Bibliographical references#

    1. BONNET: Methods of regularized integral equations in elastodynamics - Bulletin of DER - Series C - No. 1/2 - (1987).

  1. ERINGEN - SUHUBI - Elastodynamics, Vol.2: Linear Theory Academic Press (1975).