Benchmark solution ===================== Calculation method used for the reference solution -------------------------------------------------------- .. image:: images/Object_7.svg :width: 624 :height: 313 .. _RefImage_Object_7.svg: The constants :math:`A` and :math:`B` are calculated by solving the linear system obtained by writing: :math:`{\sigma }_{\mathrm{rr}}(a)=-p` :math:`{\sigma }_{\mathrm{rr}}(b)=0` We get: .. csv-table:: "For :math:`r=0.1` "," :math:`{u}_{r}=7.3398{10}^{-3}` ", "For :math:`r=0.2` "," :math:`{u}_{r}=4.6816{10}^{-3}`" "", ":math:`{\sigma }_{\mathrm{rr}}=-1` ", "", ":math:`{\sigma }_{\mathrm{rr}}=0.`" "", ":math:`{\sigma }_{\theta \theta }=1.6685` ", "", ":math:`{\sigma }_{\theta \theta }=0.66738`" "", ":math:`{\sigma }_{\mathrm{zz}}=0.20055` ", "", ":math:`{\sigma }_{\mathrm{zz}}=0.20031`" Transition to the Cartesian axis system: :math:`\begin{array}{ccc}{\sigma }_{\mathrm{xx}}& =& {\sigma }_{\mathrm{rr}}{\mathrm{cos}}^{2}\theta +{\sigma }_{\theta \theta }{\mathrm{sin}}^{2}\theta -2{\sigma }_{r\theta }\mathrm{sin}\theta \mathrm{cos}\theta \\ {\sigma }_{\mathrm{yy}}& =& {\sigma }_{\mathrm{rr}}{\mathrm{sin}}^{2}\theta +{\sigma }_{\theta \theta }{\mathrm{cos}}^{2}\theta +2{\sigma }_{r\theta }\mathrm{sin}\theta \mathrm{cos}\theta \\ {\sigma }_{\mathrm{xy}}& =& {\sigma }_{\mathrm{rr}}\mathrm{sin}\theta \mathrm{cos}\theta -{\sigma }_{\theta \theta }\mathrm{sin}\theta \mathrm{cos}\theta -2{\sigma }_{r\theta }({\mathrm{cos}}^{2}\theta -{\mathrm{sin}}^{2}\theta )\end{array}` with: :math:`\theta =0°` at points :math:`A` and :math:`B` :math:`\theta =22.5°` at points :math:`C` and :math:`D` :math:`\theta =45°` at points :math:`E` and :math:`F` Benchmark results ---------------------- Displacements :math:`(u,v)` and constraints .. image:: images/Object_12.svg :width: 624 :height: 313 .. _RefImage_Object_12.svg: to points :math:`A,B,C,D,E,F`. Uncertainty about the solution --------------------------- Precision of the calculation of Bessel functions. Bibliographical references --------------------------- 1. M. BONNET: Methods of regularized integral equations in elastodynamics - Bulletin of DER - Series C - No. 1/2 - (1987). 2. ERINGEN - SUHUBI - Elastodynamics, Vol.2: Linear Theory Academic Press (1975).