3. Modeling A#
3.1. Characteristics of modeling#
Modeling DKT
Node names: |
Points |
\(A=\mathrm{N1}\) |
|
|
|
||
\(G=\mathrm{N65}\) |
|
|
|
|
Boundary conditions:
Cas1 in all the nodes on side \(\mathrm{AB}\):
DDL_IMPO = _F (GROUP_NO = AB DX=0., DY=0., DZ=0., DRX =0., =0. , DRY =0. , DRZ =0.)
Case 2 none
3.2. Characteristics of the mesh#
Number of knots: 145
Number of meshes and types: 256 TRIA3
3.3. Tested sizes and results#
Frequency |
( \(\mathrm{Hz}\) ) |
|||
Clean Mode |
Reference |
Aster |
% difference |
Tolerance |
1°: Plate embedded on one side
1 |
8.7266 |
8.6718 |
—0.63 |
|
2 |
21.3042 |
21.2904 |
—0.06 |
|
3 |
53.5542 |
53.0992 |
—0.85 |
|
4 |
68.2984 |
67.9269 |
—0.54 |
|
5 |
77.7448 |
77.4294 |
—0.40 |
|
6 |
136.0471 |
135.7635 |
—0.21 |
Aster \(\mathrm{epot}=\mathrm{ecin}\) |
|
1 |
1.4796 104 |
2 |
1.7331 104 |
3 |
4.3802 104 |
4 |
3.7367 104 |
5 |
5.4956 104 |
6 |
1.3483 105 |
2°: Free plate
7 |
33.7119 |
33.6839 |
—0.08 |
|
8 |
49.4558 |
48.9362 |
—1.05 |
|
9 |
61.0513 |
60.5849 |
—0.76 |
1.1 10—2 |
10 |
87.5160 |
87.0993 |
—0.48 |
|
11 |
87.5160 |
87.0993 |
—0.48 |
Aster \(\mathrm{epot}=\mathrm{ecin}\) |
|
7 |
2.2396 104 |
8 |
4.7270 104 |
9 |
7.2453 104 |
10 |
1.4974 105 |
11 |
1.4974 105 |
We calculate the kinetic energy ECIN_ELEM of element DKT (connected to point \(A\), one of whose sides is on \(\mathrm{AD}\)) of problem 1 (« plate embedded on one side »):
Option |
Component |
Reference ( NON_REGRESSION ) |
Aster |
% difference |
ECIN_ELEM |
TOTALE |
0.011448 |
0.0114476 |
3.5 10—4 |
ECIN_ELEM |
FLEXION |
2968.79 |
2968.7918 |
6.1 10—5 |
3.4. notes#
CALC_MODES OPTION = 'BANDE'
Case 1: FREQ = (8., 140.) Case 2: FREQ = (32., 90.)
Contents of the results file:
1°: |
6 first natural frequencies, eigenvectors and modal parameters deformation energy and kinetic energy of the 6 modes. |
2°: |
5 natural frequencies, eigenvectors and modal parameters (\(f>0\)) deformation energy and kinetics of the 5 modes. |