3. Modeling A#

3.1. Characteristics of modeling#

Modeling DKT

_images/100022BE00001054000010544E9C4231BAE65265.svg

Node names:

Points

\(A=\mathrm{N1}\)

\(B=\mathrm{N78}\)

\(C=\mathrm{N145}\)

\(D=\mathrm{N80}\)

\(G=\mathrm{N65}\)

\(H=\mathrm{N17}\)

\(I=\mathrm{N73}\)

\(J=\mathrm{N121}\)

\(K=\mathrm{N71}\)

Boundary conditions:

Cas1 in all the nodes on side \(\mathrm{AB}\):

DDL_IMPO = _F (GROUP_NO = AB DX=0., DY=0., DZ=0., DRX =0., =0. , DRY =0. , DRZ =0.)

Case 2 none

3.2. Characteristics of the mesh#

Number of knots: 145

Number of meshes and types: 256 TRIA3

3.3. Tested sizes and results#

Frequency

( \(\mathrm{Hz}\) )

Clean Mode

Reference

Aster

% difference

Tolerance

1°: Plate embedded on one side

1

8.7266

8.6718

—0.63

2

21.3042

21.2904

—0.06

3

53.5542

53.0992

—0.85

  1. 10—2

4

68.2984

67.9269

—0.54

5

77.7448

77.4294

—0.40

6

136.0471

135.7635

—0.21

Aster \(\mathrm{epot}=\mathrm{ecin}\)

1

1.4796 104

2

1.7331 104

3

4.3802 104

4

3.7367 104

5

5.4956 104

6

1.3483 105

2°: Free plate

7

33.7119

33.6839

—0.08

8

49.4558

48.9362

—1.05

9

61.0513

60.5849

—0.76

1.1 10—2

10

87.5160

87.0993

—0.48

11

87.5160

87.0993

—0.48

Aster \(\mathrm{epot}=\mathrm{ecin}\)

7

2.2396 104

8

4.7270 104

9

7.2453 104

10

1.4974 105

11

1.4974 105

We calculate the kinetic energy ECIN_ELEM of element DKT (connected to point \(A\), one of whose sides is on \(\mathrm{AD}\)) of problem 1 (« plate embedded on one side »):

Option

Component

Reference ( NON_REGRESSION )

Aster

% difference

ECIN_ELEM

TOTALE

0.011448

0.0114476

3.5 10—4

ECIN_ELEM

FLEXION

2968.79

2968.7918

6.1 10—5

3.4. notes#

CALC_MODES OPTION = 'BANDE'

Case 1: FREQ = (8., 140.) Case 2: FREQ = (32., 90.)

Contents of the results file:

1°:

6 first natural frequencies, eigenvectors and modal parameters deformation energy and kinetic energy of the 6 modes.

2°:

5 natural frequencies, eigenvectors and modal parameters (\(f>0\)) deformation energy and kinetics of the 5 modes.