4. B modeling#

4.1. Characteristics of B modeling#

Modeling DKT with mesh identical to modeling A.

Rotation of the plate such that side \(\mathrm{AB}\) is on the right \(\mathrm{3y}=\mathrm{4x}\)

_images/10003FC20000129B000013897BCC326781A19771.svg

Node names:

Points

\(A=\mathrm{N1}\)

\(B=\mathrm{N78}\)

\(C=\mathrm{N145}\)

\(D=\mathrm{N80}\)

\(G=\mathrm{N65}\)

\(H=\mathrm{N17}\)

\(I=\mathrm{N73}\)

\(J=\mathrm{N121}\)

\(K=\mathrm{N71}\)

Boundary conditions:

Cas1 in all the nodes on side \(\mathrm{AB}\):

DDL_IMPO = (GROUP_NO = AB DX=0., DY=0., DY=0., DZ=0., DRX =0. , DRY =0. , DRZ =0.)

Case 2: none

Harmonic response:

Nodal force point \(C\) (\(\mathrm{N145}\)): \(\mathrm{Fz}=–98100\)

Material: AMOR_ALPHA: 0.1 AMOR_BETA: 0.1

4.2. Characteristics of the mesh#

Number of knots: 145

Number of meshes and types: 256 TRIA3

4.3. Tested sizes and results#

The values of the natural frequencies are identical to those of modeling A.

Harmonic response:

FREQ:

\(50\mathrm{Hz}\)

NOEUD:

\(\mathrm{N145}\)

MAILLE:

\(\mathrm{M255}\)

Reference

Aster 3.03.15

Aster 3.05.16

% difference

DEPL “DZ”

2.90290E—02 5.20606E—02

2.90290E—02 5.20606E—02

0.0

DEPL “DRX”

2.52920E—02 9.44717E—02

2.52920E—02 9.44717E—02

0.0

VITE “DZ”

—1.63553E+01 9.11973E+00

—1.63553E+01 9.11973E+00

0.0

VITE “DRX”

—2.96792E+01 7.94573E+00

—2.96792E+01 7.94573E+00

0.0

ACCE “DZ”

—2.86505E+03 —5.13817E+03

—2.86505E+03 —5.13817E+03

0.0

ACCE “DRX”

—2.49622E+03 —9.32398E+03

—2.49622E+03 —9.32398E+03

0.0

“EFGE_ELNO” “MXX”

1.14053E+01 1.45539E+03

1.14053E+01 1.45539E+03

0.0

“EFGE_ELNO” “MYY”

1.10224E+01 —1.31441E+03

1.10224E+01 —1.31441E+03

0.0

“EFGE_ELNO” “MXY”

1.03148E+01 3.55382E+02

1.03148E+01 3.55382E+02

0.0

“EFGE_ELNO” “QX”

3.66163E+02 —3.77331E+03

3.66163E+02 —3.77331E+03

0.0

“EFGE_ELNO” “QY”

—3.14676E+02 2.06813E+03

—3.14676E+02 2.06813E+03

0.0

“SIGM_ELNO” “SIXZ”

5.49245E+04 —5.65997E+05

5.49245E+04 —5.65997E+05

0.0

“SIGM_ELNO” “SIYZ”

—4.72014E+04 3.10219E+05

—4.72014E+04 3.10219E+05

0.0

4.4. notes#

CALC_MODES OPTION = 'BANDE'

Case 1: FREQ = (8., 140.) Case 2: FREQ = (32., 90.)

Contents of the results file:

1°:

6 first natural frequencies, eigenvectors and modal parameters.

2°:

11 first natural frequencies, eigenvectors and modal parameters.

3°:

move \(\mathrm{DZ}\) \(\mathrm{DRX}\) to node \(\mathrm{N145}\) generalized efforts and constraints \(\mathrm{M255}\) mesh