Modeling A ============== Characteristics of modeling ------------------------ Modeling DKT .. image:: images/100022BE00001054000010544E9C4231BAE65265.svg :width: 210 :height: 210 .. _RefImage_100022BE00001054000010544E9C4231BAE65265.svg: .. csv-table:: "Node names:", "Points", ":math:`A=\mathrm{N1}` "," "," :math:`B=\mathrm{N78}` "," :math:`C=\mathrm{N145}` "," :math:`D=\mathrm{N80}` ", "" "", "", ":math:`G=\mathrm{N65}` "," :math:`H=\mathrm{N17}` "," "," :math:`I=\mathrm{N73}` "," :math:`J=\mathrm{N121}` "," :math:`K=\mathrm{N71}`" **Boundary conditions:** Cas1 in all the nodes on side :math:`\mathrm{AB}`: .. code-block:: text DDL_IMPO = _F (GROUP_NO = AB DX=0., DY=0., DZ=0., DRX =0., =0. , DRY =0. , DRZ =0.) Case 2 none Characteristics of the mesh ---------------------------- Number of knots: 145 Number of meshes and types: 256 TRIA3 Tested sizes and results ------------------------------ .. csv-table:: "", "**Frequency**", "**(** :math:`\mathrm{Hz}` **)**", "", "" "**Clean Mode**", "**Reference**", "**Aster**", "**% difference**", "**Tolerance**" 1°: Plate embedded on one side .. csv-table:: "1", "8.7266", "8.6718", "—0.63", "" "2", "21.3042", "21.2904", "—0.06", "" "3", "53.5542", "53.0992", "—0.85", "1. 10—2" "4", "68.2984", "67.9269", "—0.54", "" "5", "77.7448", "77.4294", "—0.40", "" "6", "136.0471", "135.7635", "—0.21", "" .. csv-table:: "", "*Aster* :math:`\mathrm{epot}=\mathrm{ecin}`" "1", "1.4796 104" "2", "1.7331 104" "3", "4.3802 104" "4", "3.7367 104" "5", "5.4956 104" "6", "1.3483 105" 2°: Free plate .. csv-table:: "7", "33.7119", "33.6839", "—0.08", "" "8", "49.4558", "48.9362", "—1.05", "" "9", "61.0513", "60.5849", "—0.76", "1.1 10—2" "10", "87.5160", "87.0993", "—0.48", "" "11", "87.5160", "87.0993", "—0.48", "" .. csv-table:: "", "*Aster* :math:`\mathrm{epot}=\mathrm{ecin}`" "7", "2.2396 104" "8", "4.7270 104" "9", "7.2453 104" "10", "1.4974 105" "11", "1.4974 105" We calculate the kinetic energy ECIN_ELEM of element DKT (connected to point :math:`A`, one of whose sides is on :math:`\mathrm{AD}`) of problem 1 ("plate embedded on one side"): +----------+-------------+------------------------------------+---------+----------------+ |**Option**|**Component**|**Reference (** NON_REGRESSION **)**|**Aster**|**% difference**| +----------+-------------+------------------------------------+---------+----------------+ | | | +----------+-------------+------------------------------------+---------+----------------+ |ECIN_ELEM |TOTALE |0.011448 |0.0114476|3.5 10—4 | +----------+-------------+------------------------------------+---------+----------------+ |ECIN_ELEM |FLEXION |2968.79 |2968.7918|6.1 10—5 | +----------+-------------+------------------------------------+---------+----------------+ notes --------- .. code-block:: text CALC_MODES OPTION = 'BANDE' Case 1: FREQ = (8., 140.) Case 2: FREQ = (32., 90.) **Contents of the results file:** .. csv-table:: "1°:", "6 first natural frequencies, eigenvectors and modal parameters deformation energy and kinetic energy of the 6 modes." "2°:", "5 natural frequencies, eigenvectors and modal parameters (:math:`f>0`) deformation energy and kinetics of the 5 modes."