2. Benchmark solution#

2.1. Calculation method used for the reference solution#

The direct calculation defines an assembled vector for the spatial distribution of the force and applies the spectral force density \({G}_{\mathrm{FF}}(\omega )\) to this distribution (method 1).

The decomposed calculation defines the excitation as an interspectral matrix of dimension 3 (equal to the number of excited nodes) and applies, in force imposed on the nodes, the following interspectral matrix (method 2):

\(\left[\begin{array}{ccc}\frac{1}{4}& \frac{1}{2}& \frac{1}{4}\\ \frac{1}{2}& 1& \frac{1}{2}\\ \frac{1}{4}& \frac{1}{2}& \frac{1}{4}\end{array}\right]{G}_{\mathrm{FF}}(\omega )\)

Both results should be the same without any approximation.

2.2. Benchmark results#

Node \(\mathrm{P3}\) displacement power spectral density at frequencies: \(4.,6.,8.,10.\) and \(12\mathrm{Hz}\).

2.3. Bibliographical references#

    1. DUVAL « Dynamic response under random excitation in Code_Aster: theoretical principles and examples of use » - Note HP-61/92.148