Benchmark solution ===================== Calculation method used for the reference solution -------------------------------------------------------- The direct calculation defines an assembled vector for the spatial distribution of the force and applies the spectral force density :math:`{G}_{\mathrm{FF}}(\omega )` to this distribution (method 1). The decomposed calculation defines the excitation as an interspectral matrix of dimension 3 (equal to the number of excited nodes) and applies, in force imposed on the nodes, the following interspectral matrix (method 2): :math:`\left[\begin{array}{ccc}\frac{1}{4}& \frac{1}{2}& \frac{1}{4}\\ \frac{1}{2}& 1& \frac{1}{2}\\ \frac{1}{4}& \frac{1}{2}& \frac{1}{4}\end{array}\right]{G}_{\mathrm{FF}}(\omega )` Both results should be the same without any approximation. Benchmark results ---------------------- Node :math:`\mathrm{P3}` displacement power spectral density at frequencies: :math:`4.,6.,8.,10.` and :math:`12\mathrm{Hz}`. Bibliographical references --------------------------- 1. C. DUVAL "Dynamic response under random excitation in *Code_Aster*: theoretical principles and examples of use" - Note HP-61/92.148