3. Modeling A#
3.1. Characteristics of modeling#
We use straight Timoshenko POU_D_T beams and DIS_T discrete elements.
Cutting: |
\(\mathrm{AD}\): 5 stitches SEG2 \(\mathrm{DB}\): 15 stitches SEG2 \(\mathrm{CD}\): 1 mesh SEG2 |
Modeling: |
POU_D_Tpour all the meshes of the \(\mathrm{AB}\) beam DIS_Tpour the \(\mathrm{CD}\) mesh and the \(C\) stitch For the whole structure \(\mathrm{DZ}=\mathrm{DRX}=\mathrm{DRY}=0\) |
Boundary conditions: In all the knots of Beam \(\mathrm{AB}\): At the knots extremities: in \(C\): |
DDL_IMPO: (GROUP_NO: NPOUTRE DZ:0., DRX :0, DRY :0.) (GROUP_NO: A DX: 0., DY: 0.) (GROUP_NO: B DY: 0.) (GROUP_NO: CDX: 0., DZ: 0.) |
Node names: |
Point \(A=\mathrm{N1}\) Point \(B=\mathrm{N21}\) |
Point \(C=\mathrm{N22}\) Point \(D=\mathrm{N6}\) |
3.2. Characteristics of the mesh#
Number of knots: |
22 |
|
Number of meshes and types: |
21 meshes SEG2 |
1 mesh P0I1 |
3.3. Tested sizes and results#
Frequency ( \(\mathrm{Hz}\) )
\(\lambda\) |
Clean Mode Order |
Reference |
\(0.\) |
flexure 1 Flexion 2 |
1.5707 6.2831 |
\(0.001\) |
1 bend 2. Flexion 3 flexure 2 |
1 » 1.5460 |
1.5958 |
||
6.2336 » |
||
\(0.01\) |
1 bend 2 flexure 3 flexure 2 |
1 » 1.4937 |
1.6506 |
||
6.2874 » |
3.4. notes#
For \(\lambda =0\), we did:
CALC_MODES
OPTION = “PLUS_PETITE” CALC_FREQ =_F (NMAX_FREQ = 2) SOLVEUR_MODAL =_F (METHODE = “TRI_DIAG”)
For \(\lambda =0.001\), we did:
CALC_MODES
OPTION = “PROCHE” CALC_FREQ =_F (FREQ = (1.5, 1.6, 6.5))
For \(\lambda \mathrm{=}0.01\), we did:
CALC_MODES
OPTION = “AJUSTE” CALC_FREQ =_F (FREQ = (1., 7.))
Contents of the results file:
Case 1:2 first natural frequencies, eigenvectors and modal parameters.
Case 2:3 first natural frequencies and modal parameters.
Case 3: first 3 natural frequencies, eigenvectors and modal parameters.