Modeling A ============== Characteristics of modeling ----------------------------------- We use straight Timoshenko POU_D_T beams and DIS_T discrete elements. .. image:: images/100018180000196D0000082AA82EEF68684B27DF.svg :width: 327 :height: 105 .. _RefImage_100018180000196D0000082AA82EEF68684B27DF.svg: .. csv-table:: "Cutting:", ":math:`\mathrm{AD}`: 5 stitches SEG2 :math:`\mathrm{DB}`: 15 stitches SEG2 :math:`\mathrm{CD}`: 1 mesh SEG2" "", "" "Modeling:", "POU_D_Tpour all the meshes of the :math:`\mathrm{AB}` beam DIS_Tpour the :math:`\mathrm{CD}` mesh and the :math:`C` stitch For the whole structure :math:`\mathrm{DZ}=\mathrm{DRX}=\mathrm{DRY}=0`" .. csv-table:: "Boundary conditions: In all the knots of Beam :math:`\mathrm{AB}`: At the knots extremities: in :math:`C`:", "DDL_IMPO: (GROUP_NO: NPOUTRE DZ:0., DRX :0, DRY :0.) (GROUP_NO: A DX: 0., DY: 0.) (GROUP_NO: B DY: 0.) (GROUP_NO: CDX: 0., DZ: 0.)" .. csv-table:: "Node names:", "Point :math:`A=\mathrm{N1}` Point :math:`B=\mathrm{N21}` ", "Point :math:`C=\mathrm{N22}` Point :math:`D=\mathrm{N6}`" Characteristics of the mesh ---------------------------- .. csv-table:: "Number of knots:", "22", "" "Number of meshes and types:", "21 meshes SEG2 ", "1 mesh P0I1" Tested sizes and results ------------------------------ **Frequency (** :math:`\mathrm{Hz}` **)** .. csv-table:: ":math:`\lambda` ", "**Clean Mode Order**", "**Reference**" ":math:`0.` ", "flexure 1 Flexion 2", "1.5707 6.2831" ":math:`0.001` ", "1 bend 2. Flexion 3 flexure 2", 1" 1.5460 1.5958 6.2336" ":math:`0.01` ", "1 bend 2 flexure 3 flexure 2", 1" 1.4937 1.6506 6.2874" notes --------- For :math:`\lambda =0`, we did: .. code-block:: text CALC_MODES OPTION = 'PLUS_PETITE' CALC_FREQ =_F (NMAX_FREQ = 2) SOLVEUR_MODAL =_F (METHODE = 'TRI_DIAG') For :math:`\lambda =0.001`, we did: .. code-block:: text CALC_MODES OPTION = 'PROCHE' CALC_FREQ =_F (FREQ = (1.5, 1.6, 6.5)) For :math:`\lambda \mathrm{=}0.01`, we did: .. code-block:: text CALC_MODES OPTION = 'AJUSTE' CALC_FREQ =_F (FREQ = (1., 7.)) **Contents of the results file:** Case 1:2 first natural frequencies, eigenvectors and modal parameters. Case 2:3 first natural frequencies and modal parameters. Case 3: first 3 natural frequencies, eigenvectors and modal parameters.