1. Reference problem#

1.1. Geometry#

_images/10000B200000249600000E43C10B541F7D82344B.svg

Length: \(L\mathrm{=}10\)

\((a\mathrm{=}\stackrel{ˉ}{\mathit{AD}}b\mathrm{=}\stackrel{ˉ}{\mathit{DB}})\)

\(\begin{array}{c}{m}_{e}\mathrm{=}\mathit{lmabda}\rho AL\mathrm{=}780\lambda \mathit{kg}\\ {k}_{e}\mathrm{=}{\pi }^{4}{m}_{e}\mathrm{=}780\lambda {\pi }^{4}N\mathrm{/}m\end{array}\)

Straight section:

air

\(A\mathrm{=}{1.10}^{\mathrm{-}2}{m}^{2}\)

moment of inertia

\(\mathit{Iz}\mathrm{=}3.9{10}^{\mathrm{-}6}{m}^{4}\)

3 cases to study:

\(\lambda =0.\)

\(\lambda =0.001\)

\(\lambda =0.01\)

Point coordinates (meters):

\(A\)

\(B\)

\(C\)

\(D\)

\(x\)

2.5

2.5

\(y\)

\(\mathit{qcq}\mathrm{\ne }0\)

1.2. Material properties#

\(E={2.10}^{11}\mathrm{Pa}\)

\(\rho =7800.\mathrm{kg}/{m}^{3}\)

1.3. Boundary conditions and loads#

Point \(A\):

\(u=v=0.\)

Point \(B\):

\(v=0.\)

Point \(C\):

\(u=0.\) \(\theta =0.\) vertical slide

1.4. Initial conditions#

Not applicable for modal analysis.