2. Reference solution#

2.1. Calculation method used for the reference solution#

The reference solution is written for the degrees of freedom for node \(\mathit{N1}\):

\(\left(-{\omega }^{2}\left[\begin{array}{cccccc}10& \text{}& \text{}& \text{}& \text{}& \text{}\\ \text{}& 10& \text{}& \text{}& \text{}& \text{}\\ \text{}& \text{}& 10& \text{}& \text{}& \text{}\\ \text{}& \text{}& \text{}& 10& \text{}& \text{}\\ \text{}& \text{}& \text{}& \text{}& 10& \text{}\\ \text{}& \text{}& \text{}& \text{}& \text{}& 10\end{array}\right]+\left[\begin{array}{cccccc}160& \text{}& \text{}& \text{}& \text{}& \text{}\\ \text{}& 180& \text{}& \text{}& \text{}& \text{}\\ \text{}& \text{}& 1280& \text{}& \text{}& \text{}\\ \text{}& \text{}& \text{}& 180& \text{}& \text{}\\ \text{}& \text{}& \text{}& \text{}& 1280& \text{}\\ \text{}& \text{}& \text{}& \text{}& \text{}& 1960\end{array}\right]\right)x=0\)

2.2. Benchmark results#

We get the following six pulses squared \({\omega }_{i}^{2}\) in \({\text{rd.s}}^{-2}\): \(16\), \(18\), \(18\), \(128\), \(128\), \(196\) in.

Hence the following frequencies: \({f}_{i}=\frac{{\omega }_{i}}{2\pi }\)

Mode

Frequency (\(\mathit{Hz}\))

1

\(0.636619\)

2

\(0.675237\)

3

\(0.675237\)

4

\(1.800633\)

5

\(1.800633\)

6

\(2.228169\)

2.3. Uncertainty about the solution#

Analytical solution.