Reference solution ===================== Calculation method used for the reference solution -------------------------------------------------------- The reference solution is written for the degrees of freedom for node :math:`\mathit{N1}`: :math:`\left(-{\omega }^{2}\left[\begin{array}{cccccc}10& \text{}& \text{}& \text{}& \text{}& \text{}\\ \text{}& 10& \text{}& \text{}& \text{}& \text{}\\ \text{}& \text{}& 10& \text{}& \text{}& \text{}\\ \text{}& \text{}& \text{}& 10& \text{}& \text{}\\ \text{}& \text{}& \text{}& \text{}& 10& \text{}\\ \text{}& \text{}& \text{}& \text{}& \text{}& 10\end{array}\right]+\left[\begin{array}{cccccc}160& \text{}& \text{}& \text{}& \text{}& \text{}\\ \text{}& 180& \text{}& \text{}& \text{}& \text{}\\ \text{}& \text{}& 1280& \text{}& \text{}& \text{}\\ \text{}& \text{}& \text{}& 180& \text{}& \text{}\\ \text{}& \text{}& \text{}& \text{}& 1280& \text{}\\ \text{}& \text{}& \text{}& \text{}& \text{}& 1960\end{array}\right]\right)x=0` Benchmark results ---------------------- We get the following six pulses squared :math:`{\omega }_{i}^{2}` in :math:`{\text{rd.s}}^{-2}`: :math:`16`, :math:`18`, :math:`18`, :math:`128`, :math:`128`, :math:`196` in. Hence the following frequencies: :math:`{f}_{i}=\frac{{\omega }_{i}}{2\pi }` .. csv-table:: "Mode", "Frequency (:math:`\mathit{Hz}`)" "1"," :math:`0.636619`" "2"," :math:`0.675237`" "3"," :math:`0.675237`" "4"," :math:`1.800633`" "5"," :math:`1.800633`" "6"," :math:`2.228169`" Uncertainty about the solution --------------------------- Analytical solution.