5. C modeling#

5.1. Characteristics of modeling#

Discrete elements of stiffness, damping and mass.

_images/Object_14.svg

Characteristics of the elements:

DISCRET:

nodal mass

M_T_D_N

linear stiffness

K_T_D_L

linear amortization

A_T_D_L (\(c={10}^{-5}{c}_{\mathrm{critique}}\))

Boundary conditions: at node \(\mathrm{N1}\) DDL_IMPO DX = DY = DZ = 0.

Node names: \({P}_{1}=\mathrm{N1}\), \({P}_{2}=\mathrm{N2}\).

Calculation methods:

  • Integration on a modal basis with Newmark (\(\alpha =\mathrm{0,25}\), \(\delta =\mathrm{0,5}\))

No time \(\Delta t={10}^{-\mathrm{3s}}\)

  • Integration on a modal basis with Euler

No time \(\Delta t={10}^{-\mathrm{3s}}\)

Observation time: \(5s\).

5.2. Characteristics of the mesh#

Number of knots: 2

Number of meshes and type: 1 mesh SEG2

5.3. Tested sizes and results#

  • Moving point B

Move

Move

Move

Time

Reference

NEWMARK

Tolerance

EULER

Tolerance

(\(s\))

(\(m\))

Aster (\(m\))

(%)

Aster (\(m\))

(%)

0.06

3.1105 E—4

3.10936 E—4

3.10936 E—4

0.5%

3.1181 E—4

0.5%

0.13

—6,13250 E—4

—6,13016 E—4

0.5%

—6,13380 E—4

0.5%

0.25

—1.25380 E—3

—1.25304 E—3

0.5%

—1.25418 E—3

0.5%

0.69

3.44945 E—3

3.44691 E—3

0.5%

3.45069 E—3

0.5%

1.01

—4.88729 E—3

—4.89081 E—3

0.5%

—4.88547 E—3

0.5%

2.32

1.12876 E—2

1.12475 E—2

1.12475 E—2

0.5%

1.13069 E—2

0.5%

3.64

—1.77960 E—2

—1.77100 E—2

0.5%

—1.78360 E—2

0.5%

4.96

2.43613 E—2

2.42198 E—2

2.42198 E—2

0.5%

2.44242 E—2

0.5%

  • Point B speed

Speed

Speed

Speed

Time

Reference

NEWMARK

Tolerance

EULER

Tolerance

(\(s\))

(\({\mathrm{m.s}}^{-1}\))

Aster (\({\mathrm{m.s}}^{-1}\))

(%)

Aster (\({\mathrm{m.s}}^{-1}\))

(%)

0.04

9.09284 E—3

9.08897 E—3

0.5%

9.08230 E—3

0.5%

0.10

—2.39724 E—2

—2.39637 E—2

0.5%

—2.40269 E—2

0.5%

0.22

—5.49964 E—2

—5.49680 E—2

0.5%

—5.48752 E—2

0.5%

0.66

1.64958 E—1

1.64879 E—1

1.64879 E—1

1.64882 E—1

0.5%

1.04

2.56456 E—1

2.56547 E—1

2.56547 E—1

0.5%

2.57280 E—1

0.5%

2.36

—5.79010 E—1

—5.80019 E—1

0.5%

—5.81033 E—1

0.5%

3.68

8.97631 E—1

9.00729 E—1

9.00729 E—1

0.5%

9.00668 E—1

0.5%

5.00

—1.21164

—1.21829

—1.21829

0.5%

—1.21531

0.5%

5.4. notes#

The results are tested at the peak level where the values are the most significant.

In the observation interval, we remain very much below the steady state in resonance whose displacement amplitude is \(10m\).