3. Modeling A#

3.1. Characteristics of modeling#

The system is divided into 2 sub-structures:

_images/10000000000004E200000097B6FED25CD7D50F2F.png

In this situation, the two substructures are connected at the level of the 2nd mass. The dynamic interface of the 1st substructure consists of a mass m at the level of the node \(\mathit{NO3}\) of the mesh and coincides with the dynamic interface of the 2nd substructure which has no mass and is simply blocked at the level of the node \(\mathit{NO1}\).

_images/1000000000000274000000D172FF9519019C87EA.png

The eigenmodes of the complete system are calculated using the modal calculation method by substructuring with “Craig-Bampton” interfaces (blocked interfaces). The bases of each substructure are composed of a dynamic mode and a constrained mode.

The transient response of the system is calculated on the modal basis calculated by substructuring.

The time steps used are equal to: \({10}^{-2}s\) in “EULER”, \({10}^{-2}s\) in “”, in “NEWMARK”, \({10}^{-2}s\) in “DEVOGE”, \({10}^{-1}s\) in “ADAPT_ORDRE2” (for the latter, this is the initial time step of the algorithm and the maximum time step is set to formula \(\mathrm{0,15}s\) then formula \(\mathrm{0,2}s\) to optimize calculation time).

3.2. Characteristics of the substructure mesh#

Number of knots: 3

Number of meshes and types: 2 SEG2

3.3. Tested sizes and results#

Calculation by modal recombination without substructuring: Method ADAPT_ORDRE2 and RUNGE_KUTTA_54

Identification

Reference

Method: ADAPT_ORDRE2

Node \({x}_{2}\), displacement (\(m\))

4.1700 10—1

Knot \({x}_{2}\), speed (\({\mathit{m.s}}^{-1}\))

—4.3011 10—1

Node \({x}_{2}\), acceleration (\({\mathit{m.s}}^{-2}\))

3.3375 10—1

Method: RUNGE_KUTTA_54

Node \({x}_{2}\), displacement (\(m\))

4.1700 10—1

Knot \({x}_{2}\), speed (\({\mathrm{m.s}}^{-1}\))

—4.3011 10—1

Node \({x}_{2}\), acceleration (\({\mathrm{m.s}}^{-2}\))

3.3375 10—1

Calculation by substructuration

Method: EULER

Node \({x}_{2}\), displacement (\(m\))

4.1700 10—1

Knot \({x}_{2}\), speed (\({\mathrm{m.s}}^{-1}\))

—4.3011 10—1

Node \({x}_{2}\), acceleration (\({\mathrm{m.s}}^{-2}\))

3.3375 10—1

Method: DEVOGE

Node \({x}_{2}\), displacement (\(m\))

4.1700 10—1

Knot \({x}_{2}\), speed (\({\mathrm{m.s}}^{-1}\))

—4.3011 10—1

Node \({x}_{2}\), acceleration (\({\mathrm{m.s}}^{-2}\))

3.3375 10—1

Method: NEWMARK

Node \({x}_{2}\), displacement (\(m\))

4.1700 10—1

Knot \({x}_{2}\), speed (\({\mathit{m.s}}^{-1}\))

—4.3011 10—1

Node \({x}_{2}\), acceleration (\({\mathit{m.s}}^{-2}\))

3.3375 10—1

Method: RUNGE_KUTTA_32

Node \({x}_{2}\), displacement (\(m\))

4.1700 10—1

Knot \({x}_{2}\), speed (\({\mathit{m.s}}^{-1}\))

—4.3011 10—1

Node \({x}_{2}\), acceleration (\({\mathit{m.s}}^{-2}\))

3.3375 10—1

Method: ADAPT_ORDRE2

Node \({x}_{2}\), displacement (\(m\))

4.1700 10—1

Knot \({x}_{2}\), speed (\({\mathrm{m.s}}^{-1}\))

—4.3011 10—1

Node \({x}_{2}\), acceleration (\({\mathrm{m.s}}^{-2}\))

3.3375 10—1