3. Modeling A#

3.1. Characteristics of modeling#

_images/Shape2.gif

35°

48.24°

NO. 1

_images/Shape11.gif

X

Y

O

3.2. Characteristics of the mesh#

Number of knots: 75

Number of meshes and type: 28 QUAD4 56 TRIA3

3.3. Tested sizes and results#

Modeling DKT

The quantities are expressed in the coordinate system \(xoy\)

Maille

Bow

Grandeur

Reference type

Reference

Tolerance

\(\mathit{M119}\)

\(\mathit{N1}\)

EFGE_ELNO

\(\mathit{NXX}\)

“ANALYTIQUE”

\(1.25\mathrm{\times }{10}^{6}N\mathrm{/}m\)

\({10}^{\mathrm{-}10}\)

\(\mathit{NYY}\)

“ANALYTIQUE”

\(0.0\)

\({10}^{\mathrm{-}6}\)

\(\mathit{NXY}\)

“ANALYTIQUE”

\(0.0\)

\({10}^{\mathrm{-}6}\)

\(\mathit{MXX}\)

“ANALYTIQUE”

\(\mathrm{-}7.8125\mathrm{\times }{10}^{5}N\)

\(0.01\text{\%}\)

\(\mathit{MYY}\)

“ANALYTIQUE”

\(0.0\)

\({10}^{\mathrm{-}4}\)

\(\mathit{MXY}\)

“ANALYTIQUE”

\(0.0\)

\(50\)

\(\mathit{M92}\)

\(\mathit{N4}\)

EFGE_ELNO

\(\mathit{NXX}\)

“ANALYTIQUE”

\(1.25\mathrm{\times }{10}^{6}N\mathrm{/}m\)

\({10}^{\mathrm{-}10}\)

\(\mathit{NYY}\)

“ANALYTIQUE”

\(0.0\)

\({10}^{\mathrm{-}6}\)

\(\mathit{NXY}\)

“ANALYTIQUE”

\(0.0\)

\({10}^{\mathrm{-}6}\)

\(\mathit{MXX}\)

“ANALYTIQUE”

\(\mathrm{-}7.8125\mathrm{\times }{10}^{5}N\)

\(5.\text{\%}\)

\(\mathit{MYY}\)

“ANALYTIQUE”

\(0.0\)

\({10}^{\mathrm{-}6}\)

\(\mathit{MXY}\)

“ANALYTIQUE”

\(0.0\)

\(300\)

The quantities are expressed in the coordinate system \({x}_{1}{o}_{1}{y}_{1}\)

Maille

Bow

Grandeur

Reference type

Reference

Tolerance

\(\mathit{M119}\)

\(\mathit{N1}\)

EFGE_ELNO

\(\mathit{NXX}\)

“ANALYTIQUE”

\(1.25\mathrm{\times }{10}^{6}N\mathrm{/}m\)

\({10}^{\mathrm{-}10}\)

\(\mathit{NYY}\)

“ANALYTIQUE”

\(0.0\)

\({10}^{\mathrm{-}6}\)

\(\mathit{NXY}\)

“ANALYTIQUE”

\(0.0\)

\({10}^{\mathrm{-}6}\)

\(\mathit{MXX}\)

“ANALYTIQUE”

\(\mathrm{-}7.8125\mathrm{\times }{10}^{5}N\)

\(0.01\text{\%}\)

\(\mathit{MYY}\)

“ANALYTIQUE”

\(0.0\)

\({10}^{\mathrm{-}6}\)

\(\mathit{MXY}\)

“ANALYTIQUE”

\(0.0\)

\(50\)

The quantities are expressed in the coordinate system \({x}_{2}{o}_{2}{y}_{2}\)

Maille

Bow

Grandeur

Reference type

Reference

Tolerance

\(\mathit{M92}\)

\(\mathit{N4}\)

EFGE_ELNO

\(\mathit{NXX}\)

“ANALYTIQUE”

\(5.4471\mathrm{\times }{10}^{5}N\mathrm{/}m\)

\({10}^{\mathrm{-}4}\)

\(\mathit{NYY}\)

“ANALYTIQUE”

\(6.9553\mathrm{\times }{10}^{5}N\mathrm{/}m\)

\({10}^{\mathrm{-}4}\)

\(\mathit{NXY}\)

“ANALYTIQUE”

\(6.2101\mathrm{\times }{10}^{5}N\mathrm{/}m\)

\({10}^{\mathrm{-}4}\)

\(\mathit{MXX}\)

“ANALYTIQUE”

\(\mathrm{-}3.4654\mathrm{\times }{10}^{5}N\)

\({10}^{\mathrm{-}2}\)

\(\mathit{MYY}\)

“ANALYTIQUE”

\(\mathrm{-}4.3471\mathrm{\times }{10}^{5}N\)

\({10}^{\mathrm{-}2}\)

\(\mathit{MXY}\)

“ANALYTIQUE”

\(\mathrm{-}3.8813\mathrm{\times }{10}^{5}N\)

\({10}^{\mathrm{-}2}\)

Q4GG modeling

The quantities are expressed in the coordinate system \(xoy\)

Maille

Point

Grandeur

Reference type

Reference

Tolerance

\(\mathit{M119}\)

\(3\)

SIEF_ELGA

\(\mathit{NXX}\)

“NON_REGRESSION”

\(1.25\mathrm{\times }{10}^{6}N\mathrm{/}m\)

\({10}^{\mathrm{-}10}\)

\(\mathit{NYY}\)

“NON_REGRESSION”

\(0.0\)

\({10}^{\mathrm{-}10}\)

\(\mathit{NXY}\)

“NON_REGRESSION”

\(0.0\)

\({10}^{\mathrm{-}10}\)

\(\mathit{MXX}\)

“NON_REGRESSION”

\(\mathrm{-}7.53348\mathrm{\times }{10}^{5}N\)

\({10}^{\mathrm{-}10}\)

\(\mathit{MYY}\)

“NON_REGRESSION”

\(0.0\)

\({10}^{\mathrm{-}10}\)

\(\mathit{MXY}\)

“NON_REGRESSION”

\(0.0\)

\({10}^{\mathrm{-}10}\)

\(\mathit{M92}\)

\(1\)

SIEF_ELGA

\(\mathit{NXX}\)

“NON_REGRESSION”

\(1.25\mathrm{\times }{10}^{6}N\mathrm{/}m\)

\({10}^{\mathrm{-}10}\)

\(\mathit{NYY}\)

“NON_REGRESSION”

\(0.0\)

\({10}^{\mathrm{-}10}\)

\(\mathit{NXY}\)

“NON_REGRESSION”

\(0.0\)

\({10}^{\mathrm{-}10}\)

\(\mathit{MXX}\)

“NON_REGRESSION”

\(\mathrm{-}7.53349\mathrm{\times }{10}^{5}N\)

\({10}^{\mathrm{-}10}\)

\(\mathit{MYY}\)

“NON_REGRESSION”

\(0.0\)

\({10}^{\mathrm{-}10}\)

\(\mathit{MXY}\)

“NON_REGRESSION”

\(0.0\)

\({10}^{\mathrm{-}10}\)

The quantities are expressed in the coordinate system \({x}_{1}{o}_{1}{y}_{1}\)

Maille

Point

Grandeur

Reference type

Reference

Tolerance

\(\mathit{M119}\)

\(3\)

SIEF_ELGA

\(\mathit{NXX}\)

“NON_REGRESSION”

\(1.25\mathrm{\times }{10}^{6}N\mathrm{/}m\)

\({10}^{\mathrm{-}10}\)

\(\mathit{NYY}\)

“NON_REGRESSION”

\(0.0\)

\({10}^{\mathrm{-}10}\)

\(\mathit{NXY}\)

“NON_REGRESSION”

\(0.0\)

\({10}^{\mathrm{-}10}\)

\(\mathit{MXX}\)

“NON_REGRESSION”

\(\mathrm{-}7.5346\mathrm{\times }{10}^{5}N\)

\({10}^{\mathrm{-}10}\)

\(\mathit{MYY}\)

“NON_REGRESSION”

\(0.0\)

\({10}^{\mathrm{-}10}\)

\(\mathit{MXY}\)

“NON_REGRESSION”

\(0.0\)

\({10}^{\mathrm{-}10}\)

The quantities are expressed in the coordinate system \({x}_{2}{o}_{2}{y}_{2}\)

Maille

Point

Grandeur

Reference type

Reference

Tolerance

\(\mathit{M92}\)

\(1\)

SIEF_ELGA

\(\mathit{NXX}\)

“NON_REGRESSION”

\(5.54471\mathrm{\times }{10}^{5}N\mathrm{/}m\)

\({10}^{\mathrm{-}10}\)

\(\mathit{NYY}\)

“NON_REGRESSION”

\(6.95529\mathrm{\times }{10}^{5}N\mathrm{/}m\)

\({10}^{\mathrm{-}10}\)

\(\mathit{NXY}\)

“NON_REGRESSION”

\(6.21007\mathrm{\times }{10}^{5}N\mathrm{/}m\)

\({10}^{\mathrm{-}10}\)

\(\mathit{MXX}\)

“NON_REGRESSION”

\(\mathrm{-}3.34169\mathrm{\times }{10}^{5}N\)

\({10}^{\mathrm{-}10}\)

\(\mathit{MYY}\)

“NON_REGRESSION”

\(\mathrm{-}4.19180\mathrm{\times }{10}^{5}N\)

\({10}^{\mathrm{-}10}\)

\(\mathit{MXY}\)

“NON_REGRESSION”

\(\mathrm{-}3.74269\mathrm{\times }{10}^{5}N\)

\({10}^{\mathrm{-}10}\)