1. Reference problem#
1.1. Geometry#
Figure 1.1-a : element orientation.
The beam is oriented in space as shown in Figure.
Global coordinates of points \(\mathit{P1}\) and \(\mathit{P2}\):
\({X}_{\mathit{P1}}\mathrm{=}0.0;{Y}_{\mathit{P1}}\mathrm{=}0.0;{Z}_{\mathit{P1}}\mathrm{=}0.0\)
\({X}_{\mathrm{P2}}=2.0;{Y}_{\mathrm{P2}}=2.0;{Z}_{\mathrm{P2}}=2.0\)
Length: \(L=2\cdot \sqrt{3}m\)
1.2. Material properties#
Concrete:
Young’s module \(E={3.7272}^{10}\mathit{Pa}\)
Poisson’s ratio \(\nu \mathrm{=}0.0\)
1.3. Boundary conditions and loads#
On point \(\mathit{P1}\) we block the movements along \(X,Y,Z\) and the rotation around the axes \(X,Y,Z\):
\({D}_{X}^{\mathit{P1}}\mathrm{=}0.0;{D}_{Y}^{\mathit{P1}}\mathrm{=}0.0;{D}_{Z}^{\mathit{P1}}\mathrm{=}0.0;{\mathit{DR}}_{X}^{\mathit{P1}}\mathrm{=}0.0;{\mathit{DR}}_{Y}^{\mathit{P1}}\mathrm{=}0.0;{\mathit{DR}}_{Z}^{\mathit{P1}}\mathrm{=}0.0\)
On point \(\mathit{P2}\) we apply a loading according to \(X,Y,Z\):
\({F}_{X}=100.0N;{F}_{Y}=100.0N;{F}_{Z}=-100.0N\)