6. Bibliography#

  1. J.L. Batoz, G. Dhatt « Modeling of structures by finite elements: beams and plates » Hermès, Paris (1990).

  2. J.L. Batoz, G. Dhatt « Modeling of structures by finite elements: shells » Hermès, Paris (1992).

    1. Bui « Evolution of AFFE_CARA_ELEM » CR MMN /97/004.

    1. Andrieux « 3D/beam, 3D fittings/shells and other fantasies ».

    1. Lorentz « Large plastic deformations. Modeling in Aster by PETIT_REAC ». EDF/DER CRMMN 1536/07.

    1. Jetteur « Nonlinear shell kinematics ». Report SAMTECH from the PP/GC‑134/96 contract.

    1. Argyris, P. Dunne, C. Malejannakis, C. Malejannakis, E. Schelkie, « A simple triangular facet shell element with application to linear and non-linear equilibrium and elastic stability problem. » Comp. Meth. Call. Mech. Eng. , vol. 11, 1977.

    1. Frey « The static nonlinear analysis of structures by the finite element method and its application to metal construction ». Doctoral thesis, Liège, 1978.

      1. Sabir and A. C. Lock « The application of finite elements to the large deflection geometrically and non-linear behavior of cylindrical shells » Variational methods in Engineering, edited by Brebbia and Tottenham, Southampton, 1972, edited by Brebbia and Tottenham, Southampton, 1972.

  3. G.S. Dhatt « Instability of thin shells by the finite elements method. » Proc. IASS Nice. , Volume 1, Vienna 1970, pp1-36.

  4. 3D-Beam Connector [R3.03.03].

  5. Follower pressure for bulk shell elements [R3.03.07].

  6. Axisymmetric and 1D thermoelastic shells [R3.07.02].

  7. Plate elements DKT, DST, DKQ,, DSQ, and Q4 [R3.07.03].

  8. Finite elements of solid shells [R3.07.04].

  9. Geometric nonlinear solid shell elements [R3.07.05].

  10. Thermal model for thin shells [R3.07.11].

  11. Finite elements of straight and curved pipes with ovalization, swelling and warping in elasto-plasticity [R3.08.06].

  12. Thermal model for thin shells [R3.11.01].

  13. Integration of elasto-plastic relationships [R5.03.02].

  14. Nonlinear elastic behavior relationship [R5.03.20].

  15. Static and dynamic modeling of beams in large rotations [R5.03.40].

  16. Operator DEFI_MATERIAU [U4.23.01].

  17. Operator DEFI_COMPOSITE [U4.23.03].

  18. Operator AFFE_CARA_ELEM [U4.24.01].

  19. Operator AFFE_CHAR_MECA and AFFE_CHAR_MECA_F [U4.25.01].

  20. Operator AFFE_CHAR_THER and AFFE_CHAR_THER_F [U4.25.02].

  21. Operator STAT_NON_LINE [U4.32.01].

  22. Operator CALC_MATR_ELEM [U4.41.01].

  23. Operator CALC_CHAMP [U4.81.04].

  24. BELYTSCHKO T. and BINDEMAN L.P.: « Assumed strain stabilization of the eight node hexahedral elements », Computer Methods in Applied Mechanics and Engineering, Vol. 105, 225-260, 1993.

  25. FLANAGAN D.P. and BELYTSCHKO T.: « A uniform strain hexahedron and equilateral with orthogonal hourglass control », International Journal for Numerical Methods and Engineering, Vol. 17, 679-706, 1981.

  26. RIKS E.: « An incremental approach to the solution of snapping and buckling problems », International Journal of Solids and Structures, Vol. 15, 524-551, 1979.