3. Bibliography#
[1] C. CHAVANT, A. COMBESCURE, J. DEVOS, A., A. HOFFMANN, Y. MEZIERE: « Elastic and plastic buckling of thin shells », Course IPSI, 1982.
[2] S. DURANT, A. COMBESCURE: « Bifurcation analysis in large elasto‑plastic deformations: elementary formulation and validation », Internal Report No. 190, LMT ‑Cachan, 1997.
[3] N. GREFFET: « Coupled fluid-structure simulation applied to nonlinear instability problems under flow », Doctoral thesis, LMT, ENS -Cachan, 2001.
[4] R. HILL: « A general theory for uniqueness and stability in elastic-plastic solids », J. Mech. Phys. Solids, Vol. 6, 236-249, 1958.
[5] T.J.R. HUGHES, W.K. LIU, I., I. LEVIT: « Nonlinear dynamic finite element analysis of shells, Nonlinear Finite Element Analysis in Structural Mechanics », W. Wunderlich, E. Stein, E. Stein & K.J.Bathe editors, I.: « Nonlinear dynamic finite element analysis of shells, Nonlinear Finite Element Analysis in Structural Mechanics », W. Wunderlich, E. Stein & K.J.Bathe editors, Berlin, Springer, 151-168, 1981.
[6] G. LOOSS: « Elementary stability and bifurcation theory », Springer-Verlag, 1990.
[7] A. LEGER, A. COMBESCURE, M. POTIER - FERRY: « Bifurcation, buckling, stability in structural mechanics », Course IPSI, 1998.
[8] A. LEGER: « Bifurcation, buckling, stability in structural mechanics », Note EDF - DER HI‑74/98/024/0.
[9] J. SHI: « Computing critical points and secondary paths in nonlinear structural stability analysis by finite element method », Computer & Structures, Vol. 58, No. 1, No. 1, No. 1, 203-220, 1996.
[10] J.C. WOHLEVER, T.J. HEALEY: « A group theoretic approach to the global bifurcation analysis of an axially compressed cylindrical shell », Comp. Meth. In Applied Mech. And Engrg., Vol. 122, 315-349, 1995.
[11] « External pressure efforts during major movements » [R3.03.04].
[12] « Vibro-acoustic elements » [R4.02.02].
[13] « Solving algorithm for the generalized problem » [R5.01.01].
[14] « Algorithm for calculating the quadratic eigenvalue problem » [R5.01.02].
[15] « Quasi-static nonlinear algorithm » [R5.03.01].
[16] « Integration of elasto-plastic relationships » [R5.03.02].
[17] « Rousselier model in large deformations » [R5.03.06].
[18] « Instructions for buckling calculation » [U2.08.04].
[19] Q-S. NGUYEN: « Stability and Nonlinear Mechanics », HERMES Science Publications, 2000.
[20] A. BENALLAL and J-J. MARIGO: « Bifurcation and stability issues in gradient theories with softening », Modeling Simul. Subdue. Sci. Eng., 15:283-195, 2007.
[21] A. PINTO DA COSTA and A. SEEGER: « Numerical resolution of cone-constrained eigenvalue problems », Computational and Applied Mathematics, 28 (1): 37-61, 2009.
[22] « Modal solvers and generalized problem solving (GEP) » [R5.01.01].
[23] K. PHAM, H. AMOR, J-J. MARIGO and C. MAURINI: « Gradient damage models and their use to approximate brittle fracture », International Journal of Damage Mechanics, vol. 20, no. 4:618-652, 2011.
[24] « Quadratic Regularized Damage Law ENDO_CARRE » [R5.03.26]
[25] « Validation of the optimization algorithm under the constraint of inequalities from option DDL_STAB » [V6.02.138].