7. Bibliography#
« Contact elements derived from a continuous hybrid formulation », Code_Aster Reference Documentation no. [R5.03.52]
Ben Dhia H., Vautier I., « A formulation to treat frictional contact in 3D in Code_Aster », research report HI-75/99/007/A, June 1999, June 1999, EDF
Alart P., Curnier A., « A mixed formulation for frictional contact problems prone to Newton like solution methods », Computer Methods in Applied Mechanics and Engineering, vol. 92, pp. 353-375, 1991
Ji H., Dolbow J.E., « On strategies for enforcing interfacial constraints and evaluating jumps conditions with the extended finite element method », International Journal for Numerical Methods in Engineering, vol. 61, vol. 61, pp. 2508-2535, 2004
Pellet J., « Dualization of boundary conditions », Code_Aster Reference Material no. [R3.03.01]
Ern A., Guermond J.L., Theory and practice of finite elements, Springer, 2004
Brenner S.C., Scott L.R., The mathematical theory of finite element methods, 2nded., Springer, 2002
Laursen T.A., Simo J.C. « A continuum element-based formulation for the implicit solution of multi-body, large deformation frictional contact problem », International Journal for Numerical Methods in Engineering, vol. 36, vol. 36, pp. 3451-3485, 1993
Wriggers P., « Finite element algorithms for contact problems », Arch. Of Comp. Meth. In Eng., vol. 2, pp. 1-49, 1995
Curnier A, He, Q.C., Klarbring A., Klarbring A., « Continuum mechanics modelling of large deformation contact with friction », Contact mechanics, ed. Plenum Press, 1995
Pietrzak G., « Continuum mechanics modelling and augmented Lagrangian formulation of large deformation frictional contact problems », Doctoral thesis, École Polytechnique Fédérale de Lausanne, 1997
Alart P., Barboteu M., « Contact elements, generalized Newton method and domain decomposition » Applied nonlinear problems, School CEA — EDF — INRIA 1999
Chapelle D., Bathe K.J., « The INF-Sup Test », Computers & Structures, vol. 47, pp. 537-545, 1993
Moës N., Béchet E., Tourbier M., « Imposing essential boundary conditions in the X- FEM », International Journal for Numerical Methods in Engineering , 2006
DAUX C., MOES N., DOLBOW J., SUKUMAR N., N., BELYTSCHKO T., « Arbitrary branched and intersecting cracks with the extended finite element method », International Journal for Numerical Methods in Engineering, 48 (2000), 48 (2000), 1741-1760
SIAVELIS M., « Numerical modeling X- FEM of large sliding with friction along a network of discontinuities. » Doctoral thesis, Ecole Centrale de Nantes, 2011
MESCHKE G., DUMSTORFF P. Energy-based modelling of cohesive and cohesionless cracks via X- FEM. Computational Methods in Applied Mechanics Engineering, 196, 196, 2338—2557, 2007.