7. Bibliography#

  1. « Contact elements derived from a continuous hybrid formulation », Code_Aster Reference Documentation no. [R5.03.52]

  1. Ben Dhia H., Vautier I., « A formulation to treat frictional contact in 3D in Code_Aster », research report HI-75/99/007/A, June 1999, June 1999, EDF

  1. Alart P., Curnier A., « A mixed formulation for frictional contact problems prone to Newton like solution methods », Computer Methods in Applied Mechanics and Engineering, vol. 92, pp. 353-375, 1991

  1. Ji H., Dolbow J.E., « On strategies for enforcing interfacial constraints and evaluating jumps conditions with the extended finite element method », International Journal for Numerical Methods in Engineering, vol. 61, vol. 61, pp. 2508-2535, 2004

  1. Pellet J., « Dualization of boundary conditions », Code_Aster Reference Material no. [R3.03.01]

  1. Ern A., Guermond J.L., Theory and practice of finite elements, Springer, 2004

  1. Brenner S.C., Scott L.R., The mathematical theory of finite element methods, 2nded., Springer, 2002

  1. Laursen T.A., Simo J.C. « A continuum element-based formulation for the implicit solution of multi-body, large deformation frictional contact problem », International Journal for Numerical Methods in Engineering, vol. 36, vol. 36, pp. 3451-3485, 1993

  1. Wriggers P., « Finite element algorithms for contact problems », Arch. Of Comp. Meth. In Eng., vol. 2, pp. 1-49, 1995

  1. Curnier A, He, Q.C., Klarbring A., Klarbring A., « Continuum mechanics modelling of large deformation contact with friction », Contact mechanics, ed. Plenum Press, 1995

  1. Pietrzak G., « Continuum mechanics modelling and augmented Lagrangian formulation of large deformation frictional contact problems », Doctoral thesis, École Polytechnique Fédérale de Lausanne, 1997

  1. Alart P., Barboteu M., « Contact elements, generalized Newton method and domain decomposition » Applied nonlinear problems, School CEA — EDF — INRIA 1999

  1. Chapelle D., Bathe K.J., « The INF-Sup Test », Computers & Structures, vol. 47, pp. 537-545, 1993

  1. Moës N., Béchet E., Tourbier M., « Imposing essential boundary conditions in the X- FEM », International Journal for Numerical Methods in Engineering , 2006

  1. DAUX C., MOES N., DOLBOW J., SUKUMAR N., N., BELYTSCHKO T., « Arbitrary branched and intersecting cracks with the extended finite element method », International Journal for Numerical Methods in Engineering, 48 (2000), 48 (2000), 1741-1760

  1. SIAVELIS M., « Numerical modeling X- FEM of large sliding with friction along a network of discontinuities. » Doctoral thesis, Ecole Centrale de Nantes, 2011

  1. MESCHKE G., DUMSTORFF P. Energy-based modelling of cohesive and cohesionless cracks via X- FEM. Computational Methods in Applied Mechanics Engineering, 196, 196, 2338—2557, 2007.