6. References#

[bib1]

McNeal R. – Finite elements: their design and performance – Marcel Dekker Eds – 1994.

[bib2]

Simo J. C., Fox D. D., Rifai M. S. – On a stress resultant geometrically exact shell model. Part III: Computational aspects of the nonlinear theory . Computer Methods in Applied Mechanics and Engineering, vol. 79, N°1, 1990, p. 21–70.

[bib3]

Simo J. C., Rifai M. – A class of mixed assumed strain methods and the method of incompatible modes . International journal for numerical methods in engineering, vol. 29, N°8, 1990, p. 1595–1638.

[bib4]

Simo J.-C., Armero F. – Geometrically non-linear enhanced strain mixed methods and the method of incompatible modes. International Journal for Numerical Methods in Engineering, vol. 33, N°7, 1992, p. 1413–1449.

[bib5]

Simo J., Armero F., Taylor R. – Improved versions of assumed enhanced strain tri-linear elements for 3D finite deformation problems . Computer methods in applied mechanics and engineering, vol. 110, N°3-4, 1993, p. 359–386.

[bib6]

Adam L., Ponthot J.-P. – Thermomechanical modeling of metals at finite strains: first and mixed order finite elements . International Journal of Solids and Structures, vol. 42, N°21-22, 2005, p. 5615–5655.

[bib7]

Dia M., Hamila N., Abbas M., Gravouil A. – A nine nodes solid-shell finite element with enhanced pinching stress . Computational Mechanics, vol. 65, 2020, p. 1377–1395.

[bib8]

Alves de Sousa R. J., Cardoso R. P., Fontes Valente R. A., Yoon J.-W., Grácio J. J., Natal Jorge R. M.– A new one-point quadrature enhanced assumed strain (EAS) solid-shell element with multiple integration points along thickness: Part I—geometrically linear applications . International journal for numerical methods in engineering, vol. 62, N°7, 2005, p. 952–977.

[bib9]

Alves de Sousa R. J., Cardoso R. P., Fontes Valente R. A., Yoon J.-W., Grácio J. J., Natal Jorge R. M. – A new one-point quadrature enhanced assumed strain (EAS) solid-shell element with multiple integration points along thickness—part II: nonlinear applications . International Journal for Numerical Methods in Engineering, vol. 67, N°2, 2006, p. 160–188.

[bib10]

Schwarze M., Reese S. – A reduced integration solid-shell finite element based on the EAS and the ANS concept—Geometrically linear problems . International Journal for Numerical Methods in Engineering, vol. 80, N°10, 2009, p. 1322–1355.

[bib11]

Reese S. – A large deformation solid-shell concept based on reduced integration with hourglass stabilization . International Journal for Numerical Methods in Engineering, vol. 69, N°8, 2007, p.1671–1716.

[bib12]

Legay A., Combescure A. – Elastoplastic stability analysis of shells using the physically stabilized finite element SHB8PS . International Journal for Numerical Methods in Engineering, vol. 57, N°9, 2003, p. 1299–1322.

[bib13]

Cardoso R. P., Yoon J. W., Mahardika M., Choudhry S., Alves de Sousa – Enhanced assumed strain (EAS) and assumed natural strain (ANS) methods for one-point quadrature solid-shell elements . International Journal for Numerical Methods in Engineering, vol. 75, N°2, 2008, p. 156–187.

[bib14]

Cardoso R. P., Yoon J. W. One point quadrature shell element with through-thickness stretch . Computer Methods in Applied Mechanics and Engineering, vol. 194, N°9, 2005, p. 1161–1199.

[bib15]

Bischoff M., Ramm E. – Shear deformable shell elements for large strains and rotations . International Journal for Numerical Methods in Engineering, vol. 40, N°23, 1997, p. 4427–4449.

[bib16]

Betsch P., Gruttmann F., Stein E. – A 4-node finite shell element for the implementation of general hyperelastic 3D-elasticity at finite strains . Computer Methods in Applied Mechanics and Engineering, vol. 130, N°1-2, 1996, p. 57–79.

[bib17]

Militello C., Felippa C. A. – A variational justification of the assumed natural strain formulation of finite elements — I. Variational principles . Computers & Structures, vol. 34, N°3, 1990, p. 431–438.

[bib18]

Liu W. K., Guo Y., Tang S., Belytschko T. – A multiple-quadrature eight-node hexahedral finite element for large deformation elastoplastic analysis . Computer Methods in Applied Mechanics and Engineering, vol. 154, N°1-2, 1998, p. 69–132.

[bib19]

Belytschko T., Tsay C.-S. – A stabilization procedure for the quadrilateral plate element with one-point quadrature . International Journal for Numerical Methods in Engineering, vol. 19, N°3, 1983, p. 405–419.

[bib20]

Belytschko T., Bindeman L. P. – Assumed strain stabilization of the eight node hexahedral element . Computer Methods in Applied Mechanics and Engineering, vol. 105, N°2, 1993, p. 225–260.

[bib21]

Bassa B., Sabourin F., Brunet M. – A new nine-node solid-shell finite element using complete 3D constitutive laws . International Journal for Numerical Methods in Engineering, vol. 92, N°7, 2012, p. 589–636.

[bib22]

Abed-Meraim F., Combescure A. – SHB8PS—-a new adaptative, assumed-strain continuum mechanics shell element for impact analysis . Computers & Structures, vol. 80, N°9, 2002, p. 791–803.

[bib23]

Abed-Meraim F., Combescure A. – An improved assumed strain solid–shell element formulation with physical stabilization for geometric non-linear applications and elastic–plastic stability analysis . International Journal for Numerical Methods in Engineering, vol. 80, N°13, 2009, p. 1640–1686.

[bib24]

Hughes T. J. —Generalization of selective integration procedures to anisotropic and nonlinear media. International Journal for Numerical Methods in Engineering, vol. 15, No. 9, 1980, pp. 1413—1418.