References ========== .. [bib1] McNeal R. – *Finite elements: their design and performance* – Marcel Dekker Eds – 1994. .. [bib2] Simo J. C., Fox D. D., Rifai M. S. – *On a stress resultant geometrically exact shell model. Part III: Computational aspects of the nonlinear theory* . Computer Methods in Applied Mechanics and Engineering, vol. 79, N°1, 1990, p. 21–70. .. [bib3] Simo J. C., Rifai M. – *A class of mixed assumed strain methods and the method of incompatible modes* . International journal for numerical methods in engineering, vol. 29, N°8, 1990, p. 1595–1638. .. [bib4] Simo J.-C., Armero F. – Geometrically non-linear enhanced strain mixed methods and the method of incompatible modes. International Journal for Numerical Methods in Engineering, vol. 33, N°7, 1992, p. 1413–1449. .. [bib5] Simo J., Armero F., Taylor R. – *Improved versions of assumed enhanced strain tri-linear elements for 3D finite deformation problems* . Computer methods in applied mechanics and engineering, vol. 110, N°3-4, 1993, p. 359–386. .. [bib6] Adam L., Ponthot J.-P. – *Thermomechanical modeling of metals at finite strains: first and mixed order finite elements* . International Journal of Solids and Structures, vol. 42, N°21-22, 2005, p. 5615–5655. .. [bib7] Dia M., Hamila N., Abbas M., Gravouil A. – *A nine nodes solid-shell finite element with enhanced pinching stress* . Computational Mechanics, vol. 65, 2020, p. 1377–1395. .. [bib8] Alves de Sousa R. J., Cardoso R. P., Fontes Valente R. A., Yoon J.-W., Grácio J. J., Natal Jorge R. M.– *A new one-point quadrature enhanced assumed strain (EAS) solid-shell element with multiple integration points along thickness: Part I—geometrically linear applications* . International journal for numerical methods in engineering, vol. 62, N°7, 2005, p. 952–977. .. [bib9] Alves de Sousa R. J., Cardoso R. P., Fontes Valente R. A., Yoon J.-W., Grácio J. J., Natal Jorge R. M. – *A new one-point quadrature enhanced assumed strain (EAS) solid-shell element with multiple integration points along thickness—part II: nonlinear applications* . International Journal for Numerical Methods in Engineering, vol. 67, N°2, 2006, p. 160–188. .. [bib10] Schwarze M., Reese S. – *A reduced integration solid-shell finite element based on the EAS and the ANS concept—Geometrically linear problems* . International Journal for Numerical Methods in Engineering, vol. 80, N°10, 2009, p. 1322–1355. .. [bib11] Reese S. – *A large deformation solid-shell concept based on reduced integration with hourglass* *stabilization* . International Journal for Numerical Methods in Engineering, vol. 69, N°8, 2007, p.1671–1716. .. [bib12] Legay A., Combescure A. – *Elastoplastic stability analysis of shells using the physically stabilized finite element SHB8PS* . International Journal for Numerical Methods in Engineering, vol. 57, N°9, 2003, p. 1299–1322. .. [bib13] Cardoso R. P., Yoon J. W., Mahardika M., Choudhry S., Alves de Sousa – *Enhanced assumed strain (EAS) and assumed natural strain (ANS) methods for one-point quadrature solid-shell elements* . International Journal for Numerical Methods in Engineering, vol. 75, N°2, 2008, p. 156–187. .. [bib14] Cardoso R. P., Yoon J. W. *One point quadrature shell element with through-thickness stretch* . Computer Methods in Applied Mechanics and Engineering, vol. 194, N°9, 2005, p. 1161–1199. .. [bib15] Bischoff M., Ramm E. – *Shear deformable shell elements for large strains and rotations* . International Journal for Numerical Methods in Engineering, vol. 40, N°23, 1997, p. 4427–4449. .. [bib16] Betsch P., Gruttmann F., Stein E. – *A 4-node finite shell element for the implementation of general hyperelastic 3D-elasticity at finite strains* . Computer Methods in Applied Mechanics and Engineering, vol. 130, N°1-2, 1996, p. 57–79. .. [bib17] Militello C., Felippa C. A. – *A variational justification of the assumed natural strain formulation of finite elements — I. Variational principles* . Computers & Structures, vol. 34, N°3, 1990, p. 431–438. .. [bib18] Liu W. K., Guo Y., Tang S., Belytschko T. – *A multiple-quadrature eight-node hexahedral finite element for large deformation elastoplastic analysis* . Computer Methods in Applied Mechanics and Engineering, vol. 154, N°1-2, 1998, p. 69–132. .. [bib19] Belytschko T., Tsay C.-S. – *A stabilization procedure for the quadrilateral plate element with one-point quadrature* . International Journal for Numerical Methods in Engineering, vol. 19, N°3, 1983, p. 405–419. .. [bib20] Belytschko T., Bindeman L. P. – *Assumed strain stabilization of the eight node hexahedral element* . Computer Methods in Applied Mechanics and Engineering, vol. 105, N°2, 1993, p. 225–260. .. [bib21] Bassa B., Sabourin F., Brunet M. – *A new nine-node solid-shell finite element using complete 3D constitutive laws* . International Journal for Numerical Methods in Engineering, vol. 92, N°7, 2012, p. 589–636. .. [bib22] Abed-Meraim F., Combescure A. – *SHB8PS—-a new adaptative, assumed-strain continuum mechanics shell element for impact analysis* . Computers & Structures, vol. 80, N°9, 2002, p. 791–803. .. [bib23] Abed-Meraim F., Combescure A. – *An improved assumed strain solid–shell element formulation with physical stabilization for geometric non-linear applications and elastic–plastic stability analysis* . International Journal for Numerical Methods in Engineering, vol. 80, N°13, 2009, p. 1640–1686. .. [bib24] Hughes T. J. —*Generalization of selective integration procedures to anisotropic and nonlinear media*. International Journal for Numerical Methods in Engineering, vol. 15, No. 9, 1980, pp. 1413—1418.