3. Surface elements#
3.1. Triangles: ELREFE TR3, TR6, TR7#
Node coordinates:
\(\xi\) |
|
|
N1 |
0.0 |
0.0 |
N2 |
1.0 |
0.0 |
N3 |
0.0 |
1.0 |
N4 |
0.5 |
0.0 |
N5 |
0.5 |
0.5 |
N6 |
0.0 |
0.5 |
N7 |
1/3 |
1/3 |
Family |
Point |
\(\xi\) |
\(\eta\) |
Weight |
FPG1 |
1111 |
1/3 |
1/3 |
1/2 |
FPG3 |
1111 |
1/6 |
1/6 |
1/6 |
2222 |
2/3 |
1/6 |
1/6 |
|
3333 |
1/6 |
2/3 |
1/6 |
|
FPG4
|
1111 |
1/5 |
1/5 |
25/ (24*4) |
2222 |
3/5 |
1/5 |
25/ (24*4) |
|
3333 |
1/5 |
3/5 |
25/ (24*4) |
|
4444 |
1/3 |
1/3 |
-27/ (24*4) |
|
FPG6 |
1111 |
bbbb |
bbbb |
P2 |
2222 |
1 — 2b |
bbbb |
P2 |
|
3333 |
bbbb |
1 — 2b |
P2 |
|
4444 |
aaaa |
1 — 2a |
P1 |
|
5555 |
aaaa |
aaaa |
P1 |
|
6666 |
1 — 2a |
aaaa |
P1 |
|
COT3
|
1111 |
1/2 |
1/2 |
1/6 |
2222 |
0000 |
1/2 |
1/6 |
|
3333 |
1/2 |
0000 |
1/6 |
|
With |
P1 = 0.11169079483905, |
P2 = 0.0549758718227661, |
A = 0.445948490915965, |
b = 0.091576213509771 |
Family |
Point |
\(\xi\) |
|
Weight |
|
FPG7 |
1 |
1/3 |
1/3 |
9/80 |
|
2 |
A |
A |
P1 |
||
3 |
1-2A |
A |
P1 |
||
4 |
A |
1-2A |
P1 |
||
5 |
B |
B |
P2 |
||
6 |
1-2B |
B |
P2 |
||
7 |
B |
1-2B |
P2 |
With |
A = 0.470142064105115 |
|
B = 0.101286507323456 |
||
P1=0.066197076394253 |
||
P2=0.062969590272413 |
Family |
Point |
\(\xi\) |
|
Weight |
|
FPG12 |
1 |
A |
A |
P1 |
|
2 |
1-2A |
A |
P1 |
||
3 |
A |
1-2A |
P1 |
||
4 |
B |
B |
P2 |
||
5 |
1-2B |
B |
P2 |
||
6 |
B |
1-2B |
P2 |
||
7 |
C |
D |
P3 |
||
8 |
D |
C |
P3 |
||
9 |
1-C-D |
C |
P3 |
||
10 |
1-C-D |
D |
P3 |
||
11 |
C |
1-C-D |
P3 |
||
12 |
D |
1-C-D |
P3 |
TR3: triangle with 3 knots
number of nodes |
: 3 |
number of vertex nodes |
: 3 |
shape functions and first derivatives of the triangle with 3 nodes:
\(\left\{N\right\}\) |
|
|
\(1-\xi -\eta\) |
|
|
\(\xi\) |
|
|
\(\eta\) |
|
|
TR6: triangle with 6 knots
number of nodes |
: 6 |
number of vertex nodes |
: 3 |
shape functions, first derivatives of the 6-node triangle:
\(\left\{N\right\}\) |
|
|
\(\mathrm{-}(1\mathrm{-}\xi \mathrm{-}\eta )(1\mathrm{-}2(1\mathrm{-}\xi \mathrm{-}\eta ))\) |
|
|
\(-\xi (1-2\xi )\) |
|
|
\(-\eta (1-2\eta )\) |
|
|
\(4\xi (1-\xi -\eta )\) |
|
|
\(4\xi \eta\) |
|
|
\(4\eta (1\mathrm{-}\xi \mathrm{-}\eta )\) |
|
|
second derivatives of the 6-node triangle:
\(\left\{{\mathrm{\partial }}^{2}N\mathrm{/}\mathrm{\partial }{\xi }^{2}\right\}\) |
|
|
4 |
4 |
4 |
4 |
0 |
0 |
0 |
0 |
4 |
-8 |
-4 |
0 |
0 |
4 |
0 |
0 |
-4 |
-8 |
TR7: triangle with 7 knots
number of nodes |
: 7 |
number of vertex nodes |
: 3 |
7-node triangle shape functions:
\(\left\{N\right\}\) |
\(1\mathrm{-}3(\xi +\eta )+2({\xi }^{2}+{\eta }^{2})+7\xi \eta \mathrm{-}3\xi \eta (\xi +\eta )\) |
\(\xi (\mathrm{-}1+2\xi +3\eta \mathrm{-}3\eta (\xi +\eta ))\) |
\(\eta (\mathrm{-}1+2\xi +3\eta \mathrm{-}3\xi (\xi +\eta ))\) |
\(4\xi (1\mathrm{-}\xi \mathrm{-}4\eta +3\eta (\xi +\eta ))\) |
\(4\xi \eta (\mathrm{-}2+3(\xi +\eta ))\) |
\(4\eta (1\mathrm{-}4\xi \mathrm{-}\eta +3\xi (\xi +\eta ))\) |
\(27\xi \eta (1\mathrm{-}\xi \mathrm{-}\eta )\) |
first derivatives of the 7-node triangle:
\(\left\{\mathrm{\partial }N\mathrm{/}\mathrm{\partial }\xi \right\}\) |
|
\(\mathrm{-}3+4\xi +7\eta \mathrm{-}6\xi \eta \mathrm{-}3{\eta }^{2}\) |
|
\(\mathrm{-}1+4\xi +3\eta \mathrm{-}6\xi \eta \mathrm{-}3{\eta }^{2}\) |
|
\(3\xi (1\mathrm{-}2\eta \mathrm{-}\xi )\) |
|
\(4(1\mathrm{-}2\xi \mathrm{-}4\eta +6\xi \eta +3{\eta }^{2})\) |
|
\(4\eta (\mathrm{-}2+6\xi +3\eta )\) |
|
\(4\eta (\mathrm{-}4+6\xi +3\eta )\) |
|
\(27\eta (1\mathrm{-}2\xi \mathrm{-}\eta )\) |
|
second derivatives of the 7-node triangle:
\(\left\{{\mathrm{\partial }}^{2}N\mathrm{/}\mathrm{\partial }{\xi }^{2}\right\}\) |
|
|
\(4\mathrm{-}6\eta\) |
|
|
\(4\mathrm{-}6\eta\) |
|
|
\(\mathrm{-}6\eta\) |
|
|
\(4(\mathrm{-}2+6\eta )\) |
|
|
\(\text{24}\eta\) |
|
|
\(24\eta\) |
|
|
\(\mathrm{-}54\eta\) |
|
|
3.2. Quadrangles: ELREFE QU4, QU8, QU9#
Node coordinates:
\(\xi\) |
|
|
\(\mathrm{N1}\) |
-1.0 |
-1.0 |
\(\mathrm{N2}\) |
1.0 |
-1.0 |
\(\mathrm{N3}\) |
1.0 |
1.0 |
\(\mathrm{N4}\) |
-1.0 |
1.0 |
\(\mathrm{N5}\) |
0.0 |
-1.0 |
\(\mathrm{N6}\) |
1.0 |
0.0 |
\(\mathrm{N7}\) |
0.0 |
1.0 |
\(\mathrm{N8}\) |
-1.0 |
0.0 |
\(\mathrm{N9}\) |
0.0 |
0.0 |
QU4: quadrangle with 4 knots
number of knots |
: 4 |
number of vertex nodes |
: 4 |
shape functions, first and second derivatives of the 4-node quadrangle:
\(\left\{N\right\}\) |
|
|
\((1\mathrm{-}\xi )(1\mathrm{-}\eta )\mathrm{/}4\) |
|
|
\((1+\xi )(1\mathrm{-}\eta )\mathrm{/}4\) |
|
|
\((1+\xi )(1+\eta )\mathrm{/}4\) |
|
|
\((1\mathrm{-}\xi )(1+\eta )\mathrm{/}4\) |
|
|
\(\left\{{\partial }^{2}N/\partial {\xi }^{2}\right\}\) |
|
|
0 |
1/4 |
0 |
0 |
-1/4 |
0 |
0 |
1/4 |
0 |
0 |
-1/4 |
0 |
QU8: quadrangle with 8 knots
number of knots |
: 8 |
number of vertex nodes |
: 4 |
shape functions and first derivatives of the 8-node quadrangle:
\(\left\{N\right\}\) |
|
|
\((1\mathrm{-}\xi )(1\mathrm{-}\eta )(\mathrm{-}1\mathrm{-}\xi \mathrm{-}\eta )\mathrm{/}4\) |
|
|
\((1+\xi )(1\mathrm{-}\eta )(\mathrm{-}1+\xi \mathrm{-}\eta )\mathrm{/}4\) |
|
|
\((1+\xi )(1+\eta )(\mathrm{-}1+\xi +\eta )\mathrm{/}4\) |
|
|
\((1\mathrm{-}\xi )(1+\eta )(\mathrm{-}1\mathrm{-}\xi +\eta )\mathrm{/}4\) |
|
|
\((1\mathrm{-}{\xi }^{2})(1\mathrm{-}\eta )\mathrm{/}2\) |
|
|
\((1+\xi )(1\mathrm{-}{\eta }^{2})\mathrm{/}2\) |
|
|
\((1\mathrm{-}{\xi }^{2})(1+\eta )\mathrm{/}2\) |
|
|
\((1\mathrm{-}\xi )(1\mathrm{-}{\eta }^{2})\mathrm{/}2\) |
|
|
second derivatives of the 8-node quadrangle:
\(\left\{{\mathrm{\partial }}^{2}N\mathrm{/}\mathrm{\partial }{\xi }^{2}\right\}\) |
|
|
\((1-\eta )/2\) |
|
|
\((1-\eta )/2\) |
|
|
\((1+\eta )/2\) |
|
|
\((1+\eta )/2\) |
|
|
\(-1+\eta\) |
|
|
\(0\) |
|
|
\(-1-\eta\) |
|
|
\(0\) |
|
|
QU9: quadrangle with 9 knots
number of nodes |
: 9 |
number of vertex nodes |
: 4 |
shape functions and first derivatives of the 9-node quadrangle:
\(\left\{N\right\}\) |
|
|
\(\xi \eta (\xi \mathrm{-}1)(\eta \mathrm{-}1)\mathrm{/}4\) |
|
|
\(\xi \eta (\xi +1)(\eta \mathrm{-}1)\mathrm{/}4\) |
|
|
\(\xi \eta (\xi +1)(\eta +1)\mathrm{/}4\) |
|
|
\(\xi \eta (\xi \mathrm{-}1)(\eta +1)\mathrm{/}4\) |
|
|
\((1\mathrm{-}{\xi }^{2})\eta (\eta \mathrm{-}1)\mathrm{/}2\) |
|
|
\(\xi (\xi +1)(1\mathrm{-}{\eta }^{2})\mathrm{/}2\) |
|
|
\((1\mathrm{-}{\xi }^{2})\eta (\eta +1)\mathrm{/}2\) |
|
|
\(\xi (\xi \mathrm{-}1)(1\mathrm{-}{\eta }^{2})\mathrm{/}2\) |
|
|
\((1\mathrm{-}{\xi }^{2})(1\mathrm{-}{\eta }^{2})\) |
|
|
second derivatives of the 9-node quadrangle:
\(\left\{{\mathrm{\partial }}^{2}N\mathrm{/}\mathrm{\partial }{\xi }^{2}\right\}\) |
|
|
\(\eta (\eta \mathrm{-}1)\mathrm{/}2\) |
|
|
\(\eta (\eta \mathrm{-}1)\mathrm{/}2\) |
|
|
\(\eta (\eta +1)\mathrm{/}2\) |
|
|
\(\eta (\eta +1)\mathrm{/}2\) |
|
|
\(\mathrm{-}\eta (\eta \mathrm{-}1)\) |
|
|
\(1\mathrm{-}{\eta }^{2}\) |
|
|
\(\mathrm{-}\eta (\eta +1)\) |
|
|
\(1\mathrm{-}{\eta }^{2}\) |
|
|
\(\mathrm{-}2(1\mathrm{-}{\eta }^{2})\) |
|
|