2. Benchmark solution#

2.1. Calculation method used for the reference solution#

Since the loading history is very simple, the reference results can be obtained manually by applying the algorithms presented in the reference document [R7.04.01].

2.2. Benchmark results#

2.2.1. Modeling A#

\(t\)

\(D(t)\) **** (Too bad) **

43.11

0.000848907

0.014474925

0.178374238

0.524693005

0.602827469

0.73829052

0.792149807

0.967604351

2.2.2. B modeling#

The reference results for test case number 2 are obtained using a spreadsheet in which the Lemaître-Sermage damage expression was implemented according to a numerical integration diagram identical to that used in routine POST_FATIGUE of*Code_Aster*.

First, we check that the uncertainty in the results obtained for the value \(s=1.0\) via the spreadsheet is acceptable:

Damage (Excel calculation)

Damage (reference solution)

Difference ( \(\text{\%}\) )

0.0000000000

0.0000000000

0.00000%

0.0008489062

0.0008489070

-0.00010%

0.0144749268

0.0144749250

0.00001%

0.1783742841

0.1783742380

0.00003%

0.5246932887

0.5246930050

0.00005%

0.6028278917

0.6028274690

0.00007%

0.7382915411

0.7382905200

0.00014%

0.7921514337

0.7921498070

0.00021%

0.9676720845

0.9676043510

0.00700%

In a second step, a reference solution is generated for a value of

_images/Object_21.svg

= 1.003:

\(t\)

\(D(t)\) (Damage — Excel solution)

43.11

0.0

0.004742198

0.083020455

1.809947268

2.003578566

0.083020455

0.178700399

0.199207053

0.220252827

2.3. Uncertainty about the solution#

Analytical solution.

2.4. Bibliographical references#

  1. A.M. DONORE: Estimation of lifespan in fatigue with large numbers of cycles and in oligocyclic fatigue. Note [R7.04.01] Index B.