2. Reference solution#
2.1. Calculation method used for the reference solution#
The following coupled problem is solved analytically:
\(\{\begin{array}{}m\ddot{y}+ky=F\\ \frac{{\partial }^{2}p}{\partial {y}^{2}}=0\\ (\frac{\partial p}{\partial y})={\rho }_{f}\ddot{y}\end{array}\)
with
\(F\) hydrodynamic pressure force on the piston |
\(P\) hydrodynamic pressure in the fluid |
\(m,k\): piston mass and stiffness per radian |
The hydrodynamic pressure field in the fluid is written as:
\(p=-{\rho }_{f}\ddot{y}(y-l)\)
Hence the pressure force exerted on the piston:
\(F\mathrm{=}{\mathrm{\int }}_{0}^{e}pnr\mathit{dr}\mathrm{=}\mathrm{-}{\rho }_{f}\ddot{y}l\frac{{e}^{2}}{2}\)
The mass added by radian is: \({m}_{a}={\rho }_{f}l\frac{{e}^{2}}{2}\)
the eigenmode of the coupled system is equal to: \(f=\frac{1}{2\pi }\sqrt{\frac{k}{m+{m}_{a}}}=\mathrm{27,25}\mathrm{Hz}\)
2.2. Benchmark results#
Analytics.
2.3. Bibliographical references#
GIBERT R.J.: Vibrations of structures, Eyrolles (1988).