Reference solution ===================== Calculation method used for the reference solution -------------------------------------------------------- The following coupled problem is solved analytically: :math:`\{\begin{array}{}m\ddot{y}+ky=F\\ \frac{{\partial }^{2}p}{\partial {y}^{2}}=0\\ (\frac{\partial p}{\partial y})={\rho }_{f}\ddot{y}\end{array}` with .. csv-table:: ":math:`F` hydrodynamic pressure force on the piston" ":math:`P` hydrodynamic pressure in the fluid" ":math:`m,k`: piston mass and stiffness per radian" The hydrodynamic pressure field in the fluid is written as: :math:`p=-{\rho }_{f}\ddot{y}(y-l)` Hence the pressure force exerted on the piston: :math:`F\mathrm{=}{\mathrm{\int }}_{0}^{e}pnr\mathit{dr}\mathrm{=}\mathrm{-}{\rho }_{f}\ddot{y}l\frac{{e}^{2}}{2}` The mass added by radian is: :math:`{m}_{a}={\rho }_{f}l\frac{{e}^{2}}{2}` the eigenmode of the coupled system is equal to: :math:`f=\frac{1}{2\pi }\sqrt{\frac{k}{m+{m}_{a}}}=\mathrm{27,25}\mathrm{Hz}` Benchmark results ---------------------- Analytics. Bibliographical references -------------------------- 1. GIBERT R.J.: Vibrations of structures, Eyrolles (1988).