1. Reference problem#
1.1. Geometry#
C

D
B
A
Point coordinates (\(m\)):
\(A\) |
|
|
|
|
|
|
\(B\) |
|
|
|
|
|
1.2. Material properties#
We only give here the properties on which the solution depends, knowing that the command file contains other material data (elasticity modules, thermal conductivity, etc.) which ultimately play no role in the solution of the problem being treated.
Liquid water |
)
|
\({10}^{3}\)
|
Vapeur |
)
|
\(0\)
|
Gaz |
)
|
\(0\) |
Dissolved air |
)
|
\(0\)
|
Initial state |
Porosity
|
\(1\)
|
Constants |
Ideal gas constant |
\(8.32\) |
Homogenized coefficients |
)
|
\(2200\)
|
1.3. Boundary conditions and loads#
Across the entire domain, we want to:
\({p}_{w}=\mathrm{cte}={p}_{w}^{0}\)
\(\frac{1}{{K}_{w}}\mathrm{=}0\mathrm{\Rightarrow }{\rho }_{w}\mathrm{=}\mathit{cte}\mathrm{=}{\rho }_{w}^{0}\)
\({p}_{\mathrm{vp}}=\mathrm{cte}={p}_{\mathrm{vp}}^{0}\)
\({F}_{\mathrm{vp}}=0\)
\(S({p}_{c})=\mathrm{cte}={S}_{0}\)
\(T=\mathrm{cte}={T}_{0}\)
\(\phi =1\)
\({M}_{\mathrm{as}}^{\mathrm{ol}}={M}_{\mathrm{ad}}^{\mathrm{ol}}={M}_{\mathrm{vp}}^{\mathrm{ol}}\)
On all sides: Zero hydraulic and thermal flows.
We are now going to linearize \({p}_{\mathrm{vp}}\) according to \({p}_{w}\).
Writing of \({p}_{\mathrm{vp}}\) linear function of \({p}_{w}\) :
Section 4.2.3 of the Code_Aster reference document [R7.01.11] gives us the relationship: \(\frac{{\mathrm{dp}}_{\mathrm{vp}}}{{p}_{\mathrm{vp}}}=\frac{{M}_{\mathrm{vp}}^{\mathrm{ol}}}{\mathrm{RT}}\frac{{\mathrm{dp}}_{w}}{{\rho }_{w}}\). If we linearize this expression we get: \({p}_{\mathrm{vp}}=\frac{{p}_{\mathrm{vp}}^{0}}{\mathrm{RT}}\frac{{M}_{\mathrm{vp}}^{\mathrm{ol}}}{{\rho }_{w}^{0}}{p}_{w}+({p}_{\mathrm{vp}}^{0}-\frac{{p}_{\mathrm{vp}}^{0}}{\mathrm{RT}}\frac{{M}_{\mathrm{vp}}^{\mathrm{ol}}}{{\rho }_{w}^{0}}{p}_{w}^{0})\) which can be written in the form:
\({p}_{\mathrm{vp}}=A{p}_{w}+B\) eq 1.3-1
with \(A=\frac{{p}_{\mathrm{vp}}^{0}}{\mathrm{RT}}\frac{{M}_{\mathrm{vp}}^{\mathrm{ol}}}{{\rho }_{w}^{0}}\) and
On edge \(\mathrm{AB}\): \({p}_{\mathrm{vp}}=A{p}_{w}+B\)
\({p}_{\mathrm{gz}}=115000\) and \({p}_{c}={10}^{6}\)