1. Reference problem#

1.1. Geometry#

We consider a rectangular bar oriented along the \(\mathrm{Oy}\) axis.

.. image: images/10000000000001140000017190 FFA685A56FA0D0 .gif
    :width: 2.8752 in
    :height: 3.8437 in


.. _refImage_10000000000001140000017190 FFA685A56FA0D0 .gif:


The coordinates of the points are given in the following table:

Point

\(\mathrm{N4}\)

\(\mathrm{N23}\)

\(\mathrm{N27}\)

\(\mathrm{N31}\)

\(\mathrm{N1}\)

Abscissa (\(m\))

0.5

0.5

0.5

0.5

0.5

0.5

Ordered (\(m\))

5

5

2.5

2.5

2.5

-5

-5

The problem is modelled on the time interval \([0;\mathrm{10s}]\).

1.2. Material properties#

One gives here the parameters of the bar

Liquid water

\(\rho\): density (\({\mathrm{kg.m}}^{-3}\)) \(1/{K}_{\mathrm{lq}}\): inverse of compressibility (\({\mathrm{Pa}}^{-1}\))

1000 0.5E-9

Material coefficients

\(r\): homogenized density (\({\mathit{kg.m}}^{\mathrm{-}3}\)) \(E\): Young’s modulus (\(\mathit{Pa}\)) \(\nu\): Poisson’s ratio (–) \(b\): Biot coefficient (—) \({K}_{i}\): intrinsic permeability (\({m}^{2}\))

2800 5.8E9 0. 1 1.E-8

Additional material coefficients for DRUCK_PRAGER

\(\mathit{ECROUISSAGE}\): form of work hardening

\(\alpha\): pressure dependence coefficient (–) \({P}_{\mathit{ultm}}\): ultimate cumulative plastic deformation (–) \({\sigma }_{Y}\): plasticity constraint (\(\mathit{Pa}\)) \(H\): work hardening module (\(\mathit{Pa}\))

\(\mathit{LINEAIRE}\) 0.33 1.0 1.E8 0.0

1.3. Boundary conditions and loads#

On \(\mathrm{HAUT}\), conditions \(\sigma \cdot n=0\) and \(p=3.E6\) Pa are imposed.

On \(\mathrm{GAUCHE}\) and \(\mathrm{DROITE}\), the conditions \({u}_{x}=0\) and zero liquid flow \(\mathrm{M.n}=0\) are imposed.

On \(\mathrm{BAS}\), the conditions \({u}_{x}={u}_{y}=0\) and zero liquid flow \(M\cdot n=0\) are imposed.

1.4. Initial conditions#

The initial fluid pressure is taken to be equal to 2 \(\mathrm{MPa}\). The initial porosity is taken to be equal to 0.5.