Reference problem ===================== Geometry --------- We consider a rectangular bar oriented along the :math:`\mathrm{Oy}` axis. .. code-block:: text .. image: images/10000000000001140000017190 FFA685A56FA0D0 .gif :width: 2.8752 in :height: 3.8437 in .. _refImage_10000000000001140000017190 FFA685A56FA0D0 .gif: The coordinates of the points are given in the following table: .. csv-table:: "**Point**", ":math:`\mathrm{N4}` "," :math:`\mathrm{N23}` "," ", "", ":math:`\mathrm{N27}` "," :math:`\mathrm{N31}` "," :math:`\mathrm{N1}`" "**Abscissa** (:math:`m`)", "0.5", "0.5", "0.5", "0.5", "0.5", "0.5" "**Ordered** (:math:`m`)", "5", "5", "2.5", "2.5", "2.5", "-5", "-5" The problem is modelled on the time interval :math:`[0;\mathrm{10s}]`. Material properties ---------------------- One gives here the parameters of the bar .. csv-table:: "Liquid water", ":math:`\rho`: density (:math:`{\mathrm{kg.m}}^{-3}`) :math:`1/{K}_{\mathrm{lq}}`: inverse of compressibility (:math:`{\mathrm{Pa}}^{-1}`)", "1000 0.5E-9" "Material coefficients", ":math:`r`: homogenized density (:math:`{\mathit{kg.m}}^{\mathrm{-}3}`) :math:`E`: Young's modulus (:math:`\mathit{Pa}`) :math:`\nu`: Poisson's ratio (--) :math:`b`: Biot coefficient (—) :math:`{K}_{i}`: intrinsic permeability (:math:`{m}^{2}`)", "2800 5.8E9 0. 1 1.E-8" "Additional material coefficients for DRUCK_PRAGER "," :math:`\mathit{ECROUISSAGE}`: form of work hardening :math:`\alpha`: pressure dependence coefficient (--) :math:`{P}_{\mathit{ultm}}`: ultimate cumulative plastic deformation (--) :math:`{\sigma }_{Y}`: plasticity constraint (:math:`\mathit{Pa}`) :math:`H`: work hardening module (:math:`\mathit{Pa}`)", ":math:`\mathit{LINEAIRE}` 0.33 1.0 1.E8 0.0" Boundary conditions and loads ------------------------------------- On :math:`\mathrm{HAUT}`, conditions :math:`\sigma \cdot n=0` and :math:`p=3.E6` Pa are imposed. On :math:`\mathrm{GAUCHE}` and :math:`\mathrm{DROITE}`, the conditions :math:`{u}_{x}=0` and zero liquid flow :math:`\mathrm{M.n}=0` are imposed. On :math:`\mathrm{BAS}`, the conditions :math:`{u}_{x}={u}_{y}=0` and zero liquid flow :math:`M\cdot n=0` are imposed. Initial conditions -------------------- The initial fluid pressure is taken to be equal to 2 :math:`\mathrm{MPa}`. The initial porosity is taken to be equal to 0.5.