1. Reference problem#

1.1. Geometry#

_images/10000000000002800000028D9DF5DADE3F7AC98C.png

height: \(h=1m\)

width: \(l=1m\)

thickness: \(e=1m\)

Point coordinates (in meters):

\(A\)

\(B\)

\(C\)

\(D\)

\(x\)

0.5

\(y\)

0.5

\(z\)

0.5

1.2. Property of materials#

elastic properties under the keyword ELAS:

\(E\mathrm{=}5000.0\) in \(\mathrm{MPa}\)

\(\nu \mathrm{=}0.12\)

\(\alpha \mathrm{=}0.0\)

viscoplastic properties under the key VISC_DRUC_PRAG:

\({P}_{\mathit{ref}}\mathrm{=}0.1\) in \(\mathrm{MPa}\)

\(A\mathrm{=}1.5\mathrm{.}{10}^{\mathrm{-}12}\) in \({s}^{\mathrm{-}1}\)

\(n\mathrm{=}4.5\)

\({p}_{\mathit{pic}}\mathrm{=}0.015\)

\({p}_{\mathit{ult}}\mathrm{=}0.028\)

\({\alpha }_{0}\mathrm{=}0.065\)

\({\alpha }_{\mathit{pic}}\mathrm{=}0.26\)

\({\alpha }_{\mathit{ult}}\mathrm{=}0.091\)

\({R}_{0}\mathrm{=}1.3021\) in \(\mathrm{MPa}\)

\({R}_{\mathit{pic}}\mathrm{=}6.24808\) in \(\mathrm{MPa}\)

\({R}_{\mathit{ult}}\mathrm{=}1.30808\) in \(\mathrm{MPa}\)

\({\beta }_{0}\mathrm{=}\mathrm{-}0.15\)

\({\beta }_{\mathit{pic}}\mathrm{=}0.\)

\({\beta }_{\mathit{ult}}\mathrm{=}0.13\)

1.3. Initial conditions, boundary conditions, and loading#

Phase 1:

The sample is brought to a homogeneous state of effective stresses: \({\sigma }_{\mathrm{xx}}^{0}={\sigma }_{\mathrm{yy}}^{0}={\sigma }_{\mathrm{zz}}^{0}\), by imposing the corresponding total pressure on the front, right and upper faces and by imposing zero water pressures everywhere. The movements are blocked on the back (\({u}_{x}=0\)), left side (\({u}_{y}=0\)) and bottom (\({u}_{z}=0\)) faces.

Phase 2:

The movements are kept blocked on the rear (\({u}_{x}=0\)), left lateral (\({u}_{y}=0\)) and lower (\({u}_{z}=0\)) faces. On all sides, hydraulic flows are zero.

An imposed displacement is applied on the upper face in order to obtain a deformation \({\varepsilon }_{\mathit{zz}}\mathrm{=}\mathrm{-}\mathrm{0,06}\) (counted from the start of phase 2). On the front and right lateral faces, limit conditions under total stress are imposed:

\(\sigma \mathrm{.}n={\sigma }_{0}(=8\mathrm{MPa})\)