Reference problem ===================== Geometry --------- .. image:: images/10000000000002800000028D9DF5DADE3F7AC98C.png :width: 3.5425in :height: 2.9835in .. _RefImage_10000000000002800000028D9DF5DADE3F7AC98C.png: height: :math:`h=1m` width: :math:`l=1m` thickness: :math:`e=1m` Point coordinates (in meters): .. csv-table:: "", ":math:`A` "," :math:`B` "," :math:`C` "," :math:`D`" ":math:`x` ", "0. ", "0. ", "0.5", "1." ":math:`y` ", "0. ", "1. ", "0.5", "1." ":math:`z` ", "0. ", "0. ", "0.5", "0." Property of materials ---------------------- elastic properties under the keyword ELAS: :math:`E\mathrm{=}5000.0` in :math:`\mathrm{MPa}` :math:`\nu \mathrm{=}0.12` :math:`\alpha \mathrm{=}0.0` viscoplastic properties under the key VISC_DRUC_PRAG: :math:`{P}_{\mathit{ref}}\mathrm{=}0.1` in :math:`\mathrm{MPa}` :math:`A\mathrm{=}1.5\mathrm{.}{10}^{\mathrm{-}12}` in :math:`{s}^{\mathrm{-}1}` :math:`n\mathrm{=}4.5` :math:`{p}_{\mathit{pic}}\mathrm{=}0.015` :math:`{p}_{\mathit{ult}}\mathrm{=}0.028` :math:`{\alpha }_{0}\mathrm{=}0.065` :math:`{\alpha }_{\mathit{pic}}\mathrm{=}0.26` :math:`{\alpha }_{\mathit{ult}}\mathrm{=}0.091` :math:`{R}_{0}\mathrm{=}1.3021` in :math:`\mathrm{MPa}` :math:`{R}_{\mathit{pic}}\mathrm{=}6.24808` in :math:`\mathrm{MPa}` :math:`{R}_{\mathit{ult}}\mathrm{=}1.30808` in :math:`\mathrm{MPa}` :math:`{\beta }_{0}\mathrm{=}\mathrm{-}0.15` :math:`{\beta }_{\mathit{pic}}\mathrm{=}0.` :math:`{\beta }_{\mathit{ult}}\mathrm{=}0.13` Initial conditions, boundary conditions, and loading ----------------------------- **Phase 1:** The sample is brought to a homogeneous state of effective stresses: :math:`{\sigma }_{\mathrm{xx}}^{0}={\sigma }_{\mathrm{yy}}^{0}={\sigma }_{\mathrm{zz}}^{0}`, by imposing the corresponding total pressure on the front, right and upper faces and by imposing zero water pressures everywhere. The movements are blocked on the back (:math:`{u}_{x}=0`), left side (:math:`{u}_{y}=0`) and bottom (:math:`{u}_{z}=0`) faces. **Phase 2:** The movements are kept blocked on the rear (:math:`{u}_{x}=0`), left lateral (:math:`{u}_{y}=0`) and lower (:math:`{u}_{z}=0`) faces. On all sides, hydraulic flows are zero. An imposed displacement is applied on the upper face in order to obtain a deformation :math:`{\varepsilon }_{\mathit{zz}}\mathrm{=}\mathrm{-}\mathrm{0,06}` (counted from the start of phase 2). On the front and right lateral faces, limit conditions under total stress are imposed: :math:`\sigma \mathrm{.}n={\sigma }_{0}(=8\mathrm{MPa})`