1. Reference problem#
1.1. Geometry#
This is a cubic sample in \(1/8\) representation using a \(\text{HEXA20}\) element.
1.2. Material properties#
The elastic properties are:
isotropic compressibility module: \(K=516200\mathrm{kPa}\);
shear modulus: \(\mu =238200\mathrm{kPa}\);
density [1] _
: \({\rho }_{s}=2500\mathrm{kg}/{m}^{3}\).
The anelastic properties of the cyclic Hujeux law are:
power of the nonlinear elastic law: \({n}_{e}=\mathrm{0,4}\);
\(\beta =24\);
\(d=\mathrm{2,5}\);
\(b=\mathrm{0,2}\);
friction angle: \(\varphi \mathrm{=}33°\);
expansion angle: \(\psi \mathrm{=}33°\);
critical pressure: \({P}_{\mathrm{c0}}=-1\mathrm{MPa}\);
reference pressure: \({P}_{\mathrm{ref}}=-1\mathrm{MPa}\);
elastic radius of isotropic mechanisms: \({r}_{\mathrm{éla}}^{s}=\mathrm{0,001}\);
elastic radius of deviatory mechanisms: \({r}_{\mathrm{éla}}^{d}=\mathrm{0,005}\);
\({a}_{\mathrm{mon}}=\mathrm{0,008}\);
\({a}_{\mathrm{cyc}}=\mathrm{0,0001}\);
\({c}_{\mathrm{mon}}=\mathrm{0,2}\);
\({c}_{\mathrm{cyc}}=\mathrm{0,1}\);
\({r}_{\mathrm{hys}}=\mathrm{0,05}\);
\({r}_{\mathrm{mob}}=\mathrm{0,9}\);
\({x}_{m}=1\);
\(\mathrm{dila}=1\);
The hydraulic properties are:
Biot coefficient: \(B=1\);
the density of water: \({\rho }_{e}=1000\mathrm{kg}/{m}^{3}\);
viscosity: \(\nu =\mathrm{0,001}\);
intrinsic permeability: \({K}^{\text{int}}=1{E}^{-8}{m}^{3}/\mathrm{kg}/s\);
the compressibility module of water: \({K}_{e}=1{E}^{+12}\mathrm{Pa}\) (compression coefficient \(1/{K}_{e}=1{E}^{-12}{\mathrm{Pa}}^{-1}\))
1.3. Boundary conditions and loads#
1.3.1. Boundary conditions#
These are the symmetry conditions on the element, which represents \(1/8\) of the sample. The movements are blocked on the front (\({u}_{y}=0\)), left side (\({u}_{x}=0\)) and bottom (\({u}_{z}=0\)) faces.
1.3.2. Loading#
Phase 1: sample consolidation up to confinement pressure \({p}_{0}\)
The sample is brought to a homogeneous state of isostatic actual stress \({\sigma }_{\mathit{xx}}^{0}\mathrm{=}{\sigma }_{\mathit{yy}}^{0}\mathrm{=}{\sigma }_{\mathit{zz}}^{0}\mathrm{=}{\sigma }_{0}\), by imposing pressure \({\sigma }_{0}\) on the rear, right lateral, and upper faces of the element, and by maintaining zero water pressures \(\mathrm{PRE1}\) everywhere.
Phase 2: undrained triaxial load
To obtain the non-drained conditions, zero hydraulic flows are imposed on all faces.
By maintaining a pressure equal to \({\sigma }_{0}\) on the rear and right lateral faces, a loading in displacement with an amplitude \(\Delta u\) equal to \(\mathrm{0,02}m\) is applied to the upper face, so as to obtain a homogeneous deformation of the sample of \(2\text{\%}\).
1.4. Results#
The solutions are post-treated at point \(C\), in terms of equivalent Von Mises stress \(Q\) (\(\mathrm{=}\sqrt{\frac{1}{2}({\sigma }^{d}\mathrm{:}{\sigma }^{d})}\)), effective isotropic pressure \(P\) (\(\mathrm{=}\frac{\text{trace}(\sigma \text{'})}{3}\)), plastic volume deformation \({\varepsilon }_{v}^{p}\), and isotropic work hardening coefficients \(({r}_{\text{iso}}^{m}+{r}_{\text{ela}}^{\text{iso},m})\) and \(({r}_{\text{iso}}^{c}+{r}_{\text{ela}}^{\text{iso},c})\) and and deviation \(({r}_{d}^{m}+{r}_{\text{ela}}^{d,m})\).
Validation is carried out by comparison with GEFDYN solutions provided by Ecole Centrale Paris.