4. C modeling#

4.1. Characteristics of modeling#

The modeling is \(\mathrm{3D}\) sub-integrated (3D_ HM_SI) with a hydro-mechanical coupling in non-linear quasistatics.

In loading phase \(1\), the sample is brought to consolidation pressure \({\sigma }_{\mathrm{xx}}^{0}={\sigma }_{\mathrm{yy}}^{0}={\sigma }_{\mathrm{zz}}^{0}={\sigma }_{0}=-50\mathrm{kPa}\). This state of confinement makes it possible to consider the sample as dense sand.

We use Hujeux’s law cyclic.

4.2. Characteristics of the mesh#

Number of knots: \(20\)

Number of meshes and type: 1 \(\mathit{HEXA20}\) and 6 \(\mathit{QUAD8}\).

4.3. Tested sizes and results#

The solutions are calculated at point \(C\) and compared to references GEFDYN. They are given in terms of isotropic pressure, plastic volume deformation \({\varepsilon }_{v}^{p}\) and mobilization factors, and summarized in the following tables:

\(Q\mathrm{=}\sqrt{\frac{1}{2}{\sigma }_{\text{ij}}^{d}\mathrm{:}{\sigma }_{\text{ij}}^{d}}(\mathit{kPa})\)

\({\varepsilon }_{\text{zz}}\)

Reference type

GEFDYN (\(\mathit{kPa}\))

tolerance (%)

-1.E-3

SOURCE_EXTERNE

3.154E+1

3.0

-2.E-3

SOURCE_EXTERNE

4.013E+1

2.0

-5.E-3

SOURCE_EXTERNE

5.194E+1

1.0

-1.E-2

SOURCE_EXTERNE

6.829E+1

1.0

-2.E-2

SOURCE_EXTERNE

1.032E+2

1.0

\(3\text{.}P\text{'}\mathrm{=}{\sigma }_{\text{ij}}\mathrm{\cdot }{\delta }_{\text{ij}}(\mathit{kPa})\)

\({\varepsilon }_{\text{zz}}\)

Reference type

GEFDYN (\(\mathit{kPa}\))

tolerance (%)

-1.E-3

SOURCE_EXTERNE

-1.389E+2

1.0

-2.E-3

SOURCE_EXTERNE

-1.338E+2

1.0

-5.E-3

SOURCE_EXTERNE

-1.250E+2

1.0

-1.E-2

SOURCE_EXTERNE

-1.368E+2

1.0

-2.E-2

SOURCE_EXTERNE

-1.860E+2

1.0

\({\varepsilon }_{v}^{p}\mathrm{=}\text{trace}({\varepsilon }^{p})\)

\({\varepsilon }_{\text{zz}}\)

Reference type

GEFDYN

tolerance (%)

-1.E-3

SOURCE_EXTERNE

-2.42E-5

6.0

-2.E-3

SOURCE_EXTERNE

-3.55E-5

4.0

-5.E-3

SOURCE_EXTERNE

-5.56E-5

3.0

-1.E-2

SOURCE_EXTERNE

-2.88E-5

5.0

-2.E-2

SOURCE_EXTERNE

7.437E-5

5.0

\(({r}_{\text{iso}}^{m}+{r}_{\text{ela}}^{s,m})\)

\({\varepsilon }_{\text{zz}}\)

Reference type

GEFDYN

tolerance (%)

-1.E-3

SOURCE_EXTERNE

0.02

1.0

-2.E-2

SOURCE_EXTERNE

0.0248

1.0

\(({r}_{\text{iso}}^{c}+{r}_{\text{ela}}^{s,c})\)

\({\varepsilon }_{\text{zz}}\)

Reference type

GEFDYN

tolerance (%)

-1.E-3

SOURCE_EXTERNE

1.49E-3

2.0

-2.E-3

SOURCE_EXTERNE

2.18E-3

2.0

-5.E-3

SOURCE_EXTERNE

3.36E-3

2.0

-1.E-2

SOURCE_EXTERNE

1.68E-3

3.0

\(({r}_{\text{dev}}^{m}+{r}_{\text{ela}}^{d,m})\)

\({\varepsilon }_{\text{zz}}\)

Reference type

GEFDYN

tolerance (%)

-1.E-3

SOURCE_EXTERNE

0.353

3.0

-2.E-3

SOURCE_EXTERNE

0.451

2.0

-5.E-3

SOURCE_EXTERNE

0.593

1.0

-1.E-2

SOURCE_EXTERNE

0.699

1.0

-2.E-2

SOURCE_EXTERNE

0.794

1.0

4.4. notes#

The comparison between Code_Aster and GEFDYN solutions is relatively good, with generally fewer \(1\text{\%}\) errors. Relative errors greater than \(1\text{\%}\) appear for levels of test values that are relatively low and close to the numerical precision applied during the calculation.