1. Reference problem#
1.1. Presentation#
In this test case, we study the pure thermal behavior of a porous medium saturated by a single fluid: water in its liquid phase. In Code_Aster, this is a THM model. The associated law of fluid behavior is of type LIQU_SATU.
1.2. Geometry#
Coordinates of points \((m)\):
\(A\text{:}\mathrm{-}\mathrm{0,5}\text{}\mathrm{-}\mathrm{0,5}\text{}C\text{:}\mathrm{0,5}\text{}\mathrm{0,5}\)
\(B\mathrm{:}\text{}\mathrm{0,5}\text{}\mathrm{-}\mathrm{0,5}\text{}D\text{:}\mathrm{-}\mathrm{0,5}\text{}\mathrm{0,5}\)
1.3. Material properties#
solid |
Density \(({\mathrm{kg.m}}^{-3})\) Drained Young’s module \(E(\mathrm{Pa})\) Poisson’s ratio Coefficient of thermal expansion of solid \(({K}^{-1})\) |
\(225.\mathrm{\times }{10}^{6}\) \(0.\) \(8.\mathrm{\times }{10}^{\mathrm{-}6}\) |
Thermal |
Homogenized conductivity \(({\mathrm{W.K}}^{-1.}{m}^{-1})\) Derivative of conductivity homogenized with respect to temperature |
\(1.7\) \(0.\) |
Homogenization coefficients |
Biot coefficient |
|
Porosity » |
\({10}^{-12}\) \(0.4\) |
|
Homogenized coefficients |
Density \(({\mathrm{kg.m}}^{-3})\) Constant stress heat \(({\mathrm{J.K}}^{-1})\) |
\(2.85\times {10}^{6}\) |
1.4. Boundary conditions and loads#
Full item:
trips \({u}_{x}=0.0m,{u}_{y}=0.0m,{u}_{z}=0.0m\).
fluid pressure \(\mathrm{PRE1}=0.0\mathrm{Pa}\)
Underside:
temperature \(T=273K\)
Upper side:
heat flow \(\mathrm{FLUN}=0.5{\mathrm{J.s}}^{-1}\mathrm{.}{m}^{-2}\)
1.5. Initial conditions#
The displacement fields, pressure, temperature are initially all zero, but the reference temperature is not zero. It is worth \({T}_{0}=273K\).