Reference problem ===================== Presentation ------------ In this test case, we study the pure thermal behavior of a porous medium saturated by a single fluid: water in its liquid phase. In *Code_Aster*, this is a THM model. The associated law of fluid behavior is of type LIQU_SATU. Geometry --------- .. image:: images/Object_7.svg :width: 250 :height: 242 .. _RefImage_Object_7.svg: Coordinates of points :math:`(m)`: :math:`A\text{:}\mathrm{-}\mathrm{0,5}\text{}\mathrm{-}\mathrm{0,5}\text{}C\text{:}\mathrm{0,5}\text{}\mathrm{0,5}` :math:`B\mathrm{:}\text{}\mathrm{0,5}\text{}\mathrm{-}\mathrm{0,5}\text{}D\text{:}\mathrm{-}\mathrm{0,5}\text{}\mathrm{0,5}` Material properties ---------------------- .. csv-table:: "solid", "Density :math:`({\mathrm{kg.m}}^{-3})` Drained Young's module :math:`E(\mathrm{Pa})` Poisson's ratio Coefficient of thermal expansion of solid :math:`({K}^{-1})` "," :math:`2\mathrm{\times }{10}^{3}` :math:`225.\mathrm{\times }{10}^{6}` :math:`0.` :math:`8.\mathrm{\times }{10}^{\mathrm{-}6}`" "Thermal", "Homogenized conductivity :math:`({\mathrm{W.K}}^{-1.}{m}^{-1})` Derivative of conductivity homogenized with respect to temperature", ":math:`1.7` :math:`0.`" "Homogenization coefficients", "Biot coefficient" Porosity", ":math:`{10}^{-12}` :math:`0.4`" "Homogenized coefficients", "Density :math:`({\mathrm{kg.m}}^{-3})` Constant stress heat :math:`({\mathrm{J.K}}^{-1})` "," :math:`1.6\times {10}^{3}` :math:`2.85\times {10}^{6}`" Boundary conditions and loads ------------------------------------- * Full item: * * trips :math:`{u}_{x}=0.0m,{u}_{y}=0.0m,{u}_{z}=0.0m`. * fluid pressure :math:`\mathrm{PRE1}=0.0\mathrm{Pa}` * Underside: * temperature :math:`T=273K` * Upper side: * heat flow :math:`\mathrm{FLUN}=0.5{\mathrm{J.s}}^{-1}\mathrm{.}{m}^{-2}` Initial conditions -------------------- The displacement fields, pressure, temperature are initially all zero, but the reference temperature is not zero. It is worth :math:`{T}_{0}=273K`.