4. B modeling#
4.1. Characteristics of modeling#
Loading and boundary conditions are modelled by:
On node N04, DX=DY=0
On node N08, DX=DY=DZ=0
On node N02, DX=0.
On node N06, DX=0.
A nodal force is imposed on:
(N01 N03 N05 N07), \(\mathit{FX}=-\text{}\frac{1}{4}{\sigma }_{d}(t)\), \(\mathit{FY}=-\text{}\frac{1}{4}{\tau }_{d}(t)\)
(N03 N04 N07 N08), \(\mathit{FX}=-\text{}\frac{1}{4}{\tau }_{d}(t)\)
(N02 N04 N06 N08), \(\mathit{FY}=\frac{1}{4}{\tau }_{d}(t)\)
(N01 N02 N05 N06), \(\mathit{FX}=\frac{1}{4}{\tau }_{d}(t)\)
The mechanical calculation is carried out with VonMises’s elasto-plastic behavior law with linear isotropic work hardening (key word” RELATION = META_P_IL “) and in large deformations (keyword” DEFORMATION = SIMO_MIEHE “)
4.2. Characteristics of the mesh#
Number of knots: |
8 |
Number of meshes and type: |
1 HEXA8, 4 QUAD4 |
4.3. Tested sizes and results#
Variables |
Moments ( \(s\) ) |
Reference Type |
Reference |
% tolerance |
\({\sigma }_{\mathit{xx}}\) |
1 |
|
148.56612701 |
|
\({\sigma }_{\mathit{xy}}\) |
1 |
|
94.6669933181 |
|
\({\epsilon }_{\mathit{xx}}\) |
1 |
|
0.015468475646 |
|
\({\epsilon }_{\mathit{yy}}\) |
1 |
|
-0.00768174092805 |
|
\({\epsilon }_{\mathit{xy}}\) |
1 |
|
0.0141972994127 |
|
\({\sigma }_{\mathit{xx}}\) |
2 |
|
248.713357259 |
|
\({\sigma }_{\mathit{xy}}\) |
2 |
|
27.5330374296 |
|
\({\epsilon }_{\mathit{xx}}\) |
2 |
|
0.0385022874704 |
|
\({\epsilon }_{\mathit{yy}}\) |
2 |
|
-0.0195587811987 |
|
\({\epsilon }_{\mathit{xy}}\) |
2 |
|
0.0210883631486 |
|
\({\sigma }_{\mathit{xx}}\) |
3 |
|
1.409651686078 |
|
\({\sigma }_{\mathit{xy}}\) |
3 |
|
0.718644752334 |
|
\({\epsilon }_{\mathit{xx}}\) |
3 |
|
0.037173466674 |
|
\({\epsilon }_{\mathit{yy}}\) |
3 |
|
-0.0191595912069 |
|
\({\epsilon }_{\mathit{xy}}\) |
3 |
|
0.0209115907367 |
|