4. B modeling#

4.1. Characteristics of modeling#

_images/1000068E00001B63000017AB3D137CA7BDA6AF2A.svg

Loading and boundary conditions are modelled by:

On node N04, DX=DY=0

On node N08, DX=DY=DZ=0

On node N02, DX=0.

On node N06, DX=0.

A nodal force is imposed on:

(N01 N03 N05 N07), \(\mathit{FX}=-\text{}\frac{1}{4}{\sigma }_{d}(t)\), \(\mathit{FY}=-\text{}\frac{1}{4}{\tau }_{d}(t)\)

(N03 N04 N07 N08), \(\mathit{FX}=-\text{}\frac{1}{4}{\tau }_{d}(t)\)

(N02 N04 N06 N08), \(\mathit{FY}=\frac{1}{4}{\tau }_{d}(t)\)

(N01 N02 N05 N06), \(\mathit{FX}=\frac{1}{4}{\tau }_{d}(t)\)

The mechanical calculation is carried out with VonMises’s elasto-plastic behavior law with linear isotropic work hardening (key word” RELATION = META_P_IL “) and in large deformations (keyword” DEFORMATION = SIMO_MIEHE “)

4.2. Characteristics of the mesh#

Number of knots:

8

Number of meshes and type:

1 HEXA8, 4 QUAD4

4.3. Tested sizes and results#

Variables

Moments ( \(s\) )

Reference Type

Reference

% tolerance

\({\sigma }_{\mathit{xx}}\)

1

AUTRE_ASTER

148.56612701

\({1.E}^{-8}\)

\({\sigma }_{\mathit{xy}}\)

1

AUTRE_ASTER

94.6669933181

\({1.E}^{-8}\)

\({\epsilon }_{\mathit{xx}}\)

1

AUTRE_ASTER

0.015468475646

\({1.E}^{-8}\)

\({\epsilon }_{\mathit{yy}}\)

1

AUTRE_ASTER

-0.00768174092805

\({1.E}^{-8}\)

\({\epsilon }_{\mathit{xy}}\)

1

AUTRE_ASTER

0.0141972994127

\({1.E}^{-8}\)

\({\sigma }_{\mathit{xx}}\)

2

AUTRE_ASTER

248.713357259

\({1.E}^{-8}\)

\({\sigma }_{\mathit{xy}}\)

2

AUTRE_ASTER

27.5330374296

\({1.E}^{-8}\)

\({\epsilon }_{\mathit{xx}}\)

2

AUTRE_ASTER

0.0385022874704

\({1.E}^{-8}\)

\({\epsilon }_{\mathit{yy}}\)

2

AUTRE_ASTER

-0.0195587811987

\({1.E}^{-8}\)

\({\epsilon }_{\mathit{xy}}\)

2

AUTRE_ASTER

0.0210883631486

\({1.E}^{-8}\)

\({\sigma }_{\mathit{xx}}\)

3

AUTRE_ASTER

1.409651686078

\({1.E}^{-8}\)

\({\sigma }_{\mathit{xy}}\)

3

AUTRE_ASTER

0.718644752334

\({1.E}^{-8}\)

\({\epsilon }_{\mathit{xx}}\)

3

AUTRE_ASTER

0.037173466674

\({1.E}^{-8}\)

\({\epsilon }_{\mathit{yy}}\)

3

AUTRE_ASTER

-0.0191595912069

\({1.E}^{-8}\)

\({\epsilon }_{\mathit{xy}}\)

3

AUTRE_ASTER

0.0209115907367

\({1.E}^{-8}\)