3. Modeling A#
3.1. Characteristics of modeling#
Loading and boundary conditions are modelled by:
On node N04, DX=DY=0
On node N08, DX=DY=DZ=0
On node N02, DX=0.
On node N06, DX=0.
A nodal force is imposed on:
(N01 N03 N05 N07), \(\mathit{FX}=-\text{}\frac{1}{4}{\sigma }_{d}(t)\), \(\mathit{FY}=-\text{}\frac{1}{4}{\tau }_{d}(t)\)
(N03 N04 N07 N08), \(\mathit{FX}=-\text{}\frac{1}{4}{\tau }_{d}(t)\)
(N02 N04 N06 N08), \(\mathit{FY}=\frac{1}{4}{\tau }_{d}(t)\)
(N01 N02 N05 N06), \(\mathit{FX}=\frac{1}{4}{\tau }_{d}(t)\)
The mechanical calculation is carried out with VonMises’s elasto-plastic behavior law with linear kinematic work hardening (keyword “RELATION = META_P_CL”).
3.2. Characteristics of the mesh#
Number of knots: |
8 |
Number of meshes and type: |
1 HEXA8, 4 QUAD4 |
3.3. Tested sizes and results#
Variables |
Moments ( \(s\) ) |
Reference Type |
Reference |
% tolerance |
\({\sigma }_{\mathit{xx}}\) |
1 |
|
151.2 |
|
\({\sigma }_{\mathit{xy}}\) |
1 |
|
93.1 |
|
\({\epsilon }_{\mathit{xx}}\) |
1 |
|
0.0148297136069 |
|
\({\epsilon }_{\mathit{yy}}\) |
1 |
|
-0.00725977988037 |
|
\({\epsilon }_{\mathit{xy}}\) |
1 |
|
0.0136014010824 |
|
\({\sigma }_{\mathit{xx}}\) |
2 |
|
257.2 |
|
\({\sigma }_{\mathit{xy}}\) |
2 |
|
33.1 |
|
\({\epsilon }_{\mathit{xx}}\) |
2 |
|
0.0406564534069 |
|
\({\epsilon }_{\mathit{yy}}\) |
2 |
|
-0.0200644318317 |
|
\({\epsilon }_{\mathit{xy}}\) |
2 |
|
0.0198372954357 |
|
\({\sigma }_{\mathit{xx}}\) |
3 |
|
4.67477798665E-13 |
|
\({\sigma }_{\mathit{xy}}\) |
3 |
|
2.92922830899E-14 |
|
\({\epsilon }_{\mathit{xx}}\) |
3 |
|
0.039337479048 |
|
\({\epsilon }_{\mathit{yy}}\) |
3 |
|
-0.019668739524 |
|
\({\epsilon }_{\mathit{xy}}\) |
3 |
|
0.019616628769 |
|