1. Reference problem#
1.1. Geometry#
Figure 1.1-a: Geometry of the reference problem
It is a cylinder with height \(H\mathrm{=}\mathrm{20mm}\), inner radius \(\mathit{Rint}\mathrm{=}\mathrm{4.118mm}\), and outer radius \(\mathit{Rext}\mathrm{=}\mathrm{4.746mm}\).
1.2. Material properties#
Material properties are described by the following parameters:
Material properties are described by the following parameters:
Thermal properties:
\(\rho {C}_{p}\mathrm{=}2000000{\mathit{J.m}}^{\mathrm{-}3}\mathrm{.}°{C}^{\mathrm{-}1}\)
\(\lambda \mathrm{=}9999.9{\mathit{W.m}}^{\mathrm{-}1}\mathrm{.}°{C}^{\mathrm{-}1}\)
Metallurgical properties:
\(\mathit{TDEQ}\mathrm{=}809°C\)
\(K\mathrm{=}{\mathrm{1.135.10}}^{\mathrm{-}2}\)
\(N\mathrm{=}2.187\)
\(\mathit{T1C}\mathrm{=}831°C\)
\(\mathit{T2C}\mathrm{=}0.°C\)
\({\mathit{QSR}}_{K}\mathrm{=}14614\)
\(\mathit{AC}\mathrm{=}{\mathrm{1.58.10}}^{\mathrm{-}4}\)
\(M\mathrm{=}4.7\)
\(\mathit{T1R}\mathrm{=}\mathrm{949,1}°C\)
\(\mathit{T2R}\mathrm{=}0.°C\)
\(\mathit{AR}\mathrm{=}\mathrm{-}5.725\)
\(\mathit{BR}\mathrm{=}0.05\)
Thermo-elastic mechanical properties:
Young’s modulus: \(E\mathrm{=}80000\mathit{MPa}\)
Poisson’s ratio: \(\mathit{NU}\mathrm{=}0.35\)
Same expansion coefficient for hot and cold phases \({F}_{\mathit{ALPHA}}=\mathrm{8,0}\times {10}^{-6}°{C}^{-1}\) and \({C}_{\mathit{ALPHA}}=\mathrm{8,0}\times {10}^{-6}°{C}^{-1}\)
Mechanical Properties of the Law META_LEMA_ANI
Parameters related to viscosity, phase \(\alpha\) pure
F1_A = 2.39
F1_M = 0.
F1_N = 4.39
F1_Q = 19922.8
Viscosity parameters, blend \(\alpha +\beta\)
F2_A = 0.22
F2_M = 0.77 E-4
F2_N = 2.96
F2_Q = 21023.7
Parameters related to viscosity, phase \(\beta\) pure
C_A = 9.36
C_M = 0.99 E-4
C_N = 6.11
C_Q = 6219
Coefficient of the anisotropy matrix in plane \((r,\theta ,z)\), phase a
F_ MRR_RR = 0.4414
F_ MTT_TT = 0.714
F_ MZZ_ZZ = 1
F_ MRT_RT = 0.75
F_ MRZ_RZ = 0.75
F_ MTZ_TZ = 0.75
Coefficient of the anisotropy matrix in plane \((r,\theta ,z)\), phase b
C_ MRR_RR = 1
C_ MTT_TT = 1
C_ MZZ_ZZ = 1
C_ MRT_RT = 0.75
C_ MRZ_RZ = 0.75
C_ MTZ_TZ = 0.75
1.3. Boundary conditions and loads#
Thermal part:
A uniform temperature is imposed all over the tube:
Time (\(s\)) |
Temperature (\(°C\)) |
-1. |
|
36.1 |
|
799.7 |
|
838.67 |
|
876.52 |
|
49.2 |
894.5 |
Mechanical part:
The lower part of the cylinder (\(\text{FACE\_INF}\)) is blocked when moving as follows \(z\): \(\mathit{UZ}(x,y\mathrm{,0})\mathrm{=}0\)
The entire upper part of the cylinder (\(\text{FACE\_SUP}\)) has a uniform \(z\) displacement
Pressure is imposed on the inside face of the tube (\(\text{FACE\_INT}\)):
Time (\(s\)) |
Pressure (\(\mathit{MPa}\)) |
-1.0 |
|
36.1 |
6.74 |
49.2 |
6.74 |
We take into account the background effect on the upper part of the tube (FACE_SUP):
Time (\(s\)) |
Pressure (\(\mathit{MPa}\)) |
-1.0 |
|
36.1 |
6.74*coeff |
49.2 |
6.74*coeff |
With \(\mathit{coef}\mathrm{=}(\mathit{Rint}\mathrm{\times }\mathit{Rint})\mathrm{/}\mathrm{[}(\mathit{Rext}\mathrm{\times }\mathit{Rext})\mathrm{-}(\mathit{Rint}\mathrm{\times }\mathit{Rint})\mathrm{]}\)