Reference problem ===================== Geometry --------- .. image:: images/Object_1.svg :width: 297 :height: 297 .. _RefImage_Object_1.svg: **Figure 1.1-a: Geometry of the reference problem** It is a cylinder with height :math:`H\mathrm{=}\mathrm{20mm}`, inner radius :math:`\mathit{Rint}\mathrm{=}\mathrm{4.118mm}`, and outer radius :math:`\mathit{Rext}\mathrm{=}\mathrm{4.746mm}`. Material properties ----------------------- Material properties are described by the following parameters: Material properties are described by the following parameters: **Thermal properties:** * :math:`\rho {C}_{p}\mathrm{=}2000000{\mathit{J.m}}^{\mathrm{-}3}\mathrm{.}°{C}^{\mathrm{-}1}` * :math:`\lambda \mathrm{=}9999.9{\mathit{W.m}}^{\mathrm{-}1}\mathrm{.}°{C}^{\mathrm{-}1}` **Metallurgical properties:** * :math:`\mathit{TDEQ}\mathrm{=}809°C` * :math:`K\mathrm{=}{\mathrm{1.135.10}}^{\mathrm{-}2}` * :math:`N\mathrm{=}2.187` * :math:`\mathit{T1C}\mathrm{=}831°C` * :math:`\mathit{T2C}\mathrm{=}0.°C` * :math:`{\mathit{QSR}}_{K}\mathrm{=}14614` * :math:`\mathit{AC}\mathrm{=}{\mathrm{1.58.10}}^{\mathrm{-}4}` * :math:`M\mathrm{=}4.7` * :math:`\mathit{T1R}\mathrm{=}\mathrm{949,1}°C` * :math:`\mathit{T2R}\mathrm{=}0.°C` * :math:`\mathit{AR}\mathrm{=}\mathrm{-}5.725` * :math:`\mathit{BR}\mathrm{=}0.05` **Thermo-elastic mechanical properties:** * Young's modulus: :math:`E\mathrm{=}80000\mathit{MPa}` * Poisson's ratio: :math:`\mathit{NU}\mathrm{=}0.35` * Same expansion coefficient for hot and cold phases :math:`{F}_{\mathit{ALPHA}}=\mathrm{8,0}\times {10}^{-6}°{C}^{-1}` and :math:`{C}_{\mathit{ALPHA}}=\mathrm{8,0}\times {10}^{-6}°{C}^{-1}` **Mechanical Properties of the Law** META_LEMA_ANI * Parameters related to viscosity, phase :math:`\alpha` pure F1_A = 2.39 F1_M = 0. F1_N = 4.39 F1_Q = 19922.8 * Viscosity parameters, blend :math:`\alpha +\beta` F2_A = 0.22 F2_M = 0.77 E-4 F2_N = 2.96 F2_Q = 21023.7 * Parameters related to viscosity, phase :math:`\beta` pure C_A = 9.36 C_M = 0.99 E-4 C_N = 6.11 C_Q = 6219 * Coefficient of the anisotropy matrix in plane :math:`(r,\theta ,z)`, phase a F_ MRR_RR = 0.4414 F_ MTT_TT = 0.714 F_ MZZ_ZZ = 1 F_ MRT_RT = 0.75 F_ MRZ_RZ = 0.75 F_ MTZ_TZ = 0.75 * Coefficient of the anisotropy matrix in plane :math:`(r,\theta ,z)`, phase b C_ MRR_RR = 1 C_ MTT_TT = 1 C_ MZZ_ZZ = 1 C_ MRT_RT = 0.75 C_ MRZ_RZ = 0.75 C_ MTZ_TZ = 0.75 Boundary conditions and loads ------------------------------------- **Thermal part:** A uniform temperature is imposed all over the tube: .. csv-table:: "Time (:math:`s`)", "Temperature (:math:`°C`)" "-1. ", "20." "0. ", "609." "36.1", "609." "44. ", "799.7" "46. ", "838.67" "48. ", "876.52" "49.2", "894.5" **Mechanical part:** The lower part of the cylinder (:math:`\text{FACE\_INF}`) is blocked when moving as follows :math:`z`: :math:`\mathit{UZ}(x,y\mathrm{,0})\mathrm{=}0` The entire upper part of the cylinder (:math:`\text{FACE\_SUP}`) has a uniform :math:`z` displacement Pressure is imposed on the inside face of the tube (:math:`\text{FACE\_INT}`): .. csv-table:: "Time (:math:`s`)", "Pressure (:math:`\mathit{MPa}`)" "-1.0", "0." "0. ", "0." "36.1", "6.74" "49.2", "6.74" We take into account the background effect on the upper part of the tube (FACE_SUP): .. csv-table:: "Time (:math:`s`)", "Pressure (:math:`\mathit{MPa}`)" "-1.0", "0." "0. ", "0." "36.1", "6.74*coeff" "49.2", "6.74*coeff" With :math:`\mathit{coef}\mathrm{=}(\mathit{Rint}\mathrm{\times }\mathit{Rint})\mathrm{/}\mathrm{[}(\mathit{Rext}\mathrm{\times }\mathit{Rext})\mathrm{-}(\mathit{Rint}\mathrm{\times }\mathit{Rint})\mathrm{]}`