1. Reference problem#
1.1. Geometry#
1.2. Material properties#
The following convention is adopted in order to distinguish the parameters of the hot phase (austenitic) from the parameters of the cold phases (ferrito-pearlitic, bainitic and martensitic):
= |
Characteristics relating to the austenitic phase |
|
= |
characteristics relating to the ferrito-pearlitic, bainitic and martensitic phases |
|
Metallurgical parameters:
TRC to model a bainitic metallurgical evolution, over the entire structure, of the form:
\({Z}_{\mathit{fbm}}=\{\begin{array}{ccc}0.& \mathit{si}t\le {\tau }_{1}& {\tau }_{1}=60s\\ \frac{t-{\tau }_{1}}{{\tau }_{2}-{\tau }_{1}}& \mathit{si}{\tau }_{1}\le t<{\tau }_{2}& {\tau }_{2}=112s\\ 1.& \mathit{si}t\ge {\tau }_{2}& \end{array}\)
Thermal parameters:
Calorific capacity: \(\rho {C}_{p}=2.{10}^{6}{\mathit{J.m}}^{-3}\mathrm{.}°{C}^{-1}\)
Conductivity: \(\lambda =9999.9{\mathit{W.m}}^{-1}\mathrm{.}°{C}^{-1}\)
Thermo-mechanical parameters:
Thermo-elastic parameters:
Young’s module \(E=200000{10}^{6}\mathit{Pa}\)
Poisson’s ratio \(\nu =0.3\)
Thermal expansion coefficients \({\alpha }_{\mathit{fbm}}={\alpha }_{\mathit{aust}}=20.{10}^{-6}°{C}^{-1}\)
Expansion coefficient definition temperature: \({T}_{\mathit{ref}}=900°C\)
Reference thermal deformation state: \(\Delta {\epsilon }_{f\gamma }^{{T}_{\mathit{ref}}}=2.52{10}^{-3}\)
Elasticity limit:
\({\sigma }_{y}^{\mathit{fbm}}=1200.{10}^{6}\mathit{Pa}\)
\({\sigma }_{y}^{\mathit{aust}}={400.10}^{6}\mathit{Pa}\)
Thermoplastic parameters (law with linear work hardening)
Tangent modules: \({E}_{T}^{\mathit{fbm}}={E}_{T}^{\mathit{aust}}={2000.10}^{6}\mathit{Pa}\)
So we have: \({H}^{\mathit{fbm}}={H}^{\mathit{aust}}=\frac{{\mathit{EE}}_{T}}{(E-{E}_{T})}=\mathrm{2,04}{.10}^{9}\mathit{Pa}\)
Settings for work hardening restoration (full restore): \({\theta }_{\gamma \mathrm{,3}}=0\)
\({\theta }_{\gamma \mathrm{,3}}\) is the rate of work hardening transmitted from austenite to the ferritic phase 3 (bainite).
1.3. Boundary conditions and loads#
\({u}_{Y}=0\) on the \(\mathit{AB}\) side; \({u}_{X}=0\) in \(A\).
\(T={T}^{0}+\mu t\), \(\mu =-5°{\mathit{C.s}}^{-1}\) throughout the structure.
The load on the structure is due to thermal and metallurgical expansion phenomena constrained in the \(z\) direction by the condition of plane deformations.
1.4. Initial conditions#
\({T}^{0}=900°C={T}^{\mathit{ref}}\)