4. Model A results#
4.1. Tested values#
The parameters of the result data structure are tested:
Identification |
Reference |
INSTpour NUME_ORDRE =176 |
176.0 |
ITER_GLOB for NUME_ORDRE =176 |
2 |
Identification |
Reference |
Test |
Tolerance |
\({\epsilon }_{\mathit{xx}}\) \(t\mathrm{=}16s\) |
-2.4599 10—3 |
|
|
\(\chi\) \(t\mathrm{=}16s\) |
1 |
|
|
\(\sigma\) \(t\mathrm{=}16s\) |
360.13 106 |
|
|
\(p\) \(t=16s\) |
7.9345 10—5 |
|
|
\({\epsilon }_{\mathit{xx}}^{\mathit{th}}\) \(t=16s\) |
-1.88 10—3 |
|
|
\({\epsilon }_{\mathit{xx}}^{\mathit{meca}}\) \(t=16s\) |
-5.799 10—4 |
|
|
\({\epsilon }_{\mathit{xx}}^{\mathit{plas}}\) \(t=16s\) |
3.9672 10—5 |
|
|
\({\epsilon }_{\mathit{xx}}\) \(t\mathrm{=}60s\) |
-1.0309 10—2 |
|
|
\(p\) \(t\mathrm{=}60s\) |
5.7213 10—3 |
|
|
\(\sigma\) \(t=60s\) |
265.73 106 |
|
|
\({\epsilon }_{\mathit{xx}}^{\mathit{th}}\) \(t\mathrm{=}60s\) |
-7.05 10—3 |
|
|
\({\epsilon }_{\mathit{xx}}^{\mathit{meca}}\) \(t\mathrm{=}60s\) |
-3.259 10—3 |
|
|
\({\epsilon }_{\mathit{xx}}^{\mathit{plas}}\) \(t\mathrm{=}60s\) |
2.86065 10—3 |
|
|
\(p\) \(t\mathrm{=}72s\) |
5.8420 10—3 |
|
|
\(\chi\) \(t\mathrm{=}112s\) |
0 |
|
|
\(\sigma\) \(t\mathrm{=}112s\) |
12.82 106 |
|
|
\(p\) \(t=112s\) |
5.8421 10—3 |
|
|
\({\epsilon }_{\mathit{xx}}^{\mathit{th}}\) \(t\mathrm{=}112s\) |
-5.88 10—3 |
|
|
\({\epsilon }_{\mathit{xx}}^{\mathit{meca}}\) \(t\mathrm{=}112s\) |
-2.90182 10—3 |
|
1.0% |
\({\epsilon }_{\mathit{xx}}^{\mathit{plas}}\) \(t\mathrm{=}112s\) |
-2.92105 10—3 |
|
|
\({\varepsilon }_{\mathit{xx}}\) \(t\mathrm{=}176s\) |
—1.5886 10—2 |
|
|
\(\chi\) \(t\mathrm{=}176s\) |
1 |
|
|
\(\sigma\) \(t\mathrm{=}176s\) |
133.55 106 |
|
|
4.2. notes#
In this modeling:
\({\varepsilon }_{\mathit{zz}}^{\mathit{pt}}(T,Z)\mathrm{=}0\)
The error on the cumulative plastic deformation at 72 seconds is in fact due to the error made in the numerical description of metallurgical transformation, which is, at this moment, about 0.5%.